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Chapter 7

STRUCTURE OF GROUPS
(cont’d)

7.8 Nilpotent Groups

We now define and study a class of solvable groups that includes all finite abelian
groups and all finitep-groups. This class has some rather interesting properties.

7.8.1 Definition. For a groupG we define theascending central seriesZ1(G) ⊆
Z2(G) ⊆ · · · of G as follows:

Z1(G) is the centerZ(G) of G;
Z2(G) is the unique subgroup ofG with Z1(G) ⊆ Z2(G) andZ2(G)/Z1(G) =

Z(G/Z1(G)).
We defineZi (G) inductively, so thatZi (G)/Zi−1(G) = Z(G/Zi−1(G)).
The groupG is callednilpotent if there exists a positive integern with Zn(G) =

G.

We first note that any abelian group is nilpotent. We next note that any nilpotent
group is solvable, since the factor groupsZi+1(G)/Zi (G) are abelian. We also note
that these classes are distinct. The proof of Theorem 7.6.3 shows that any finite
p-group is nilpotent, so the group of quaternion units provides an example of a
group that is nilpotent but not abelian. The symmetric groupS3 is solvable, but it is
not nilpotent since its center is trivial.

We will show that the converse of Lagrange’s theorem holds for nilpotent groups.
Recall that the standard counterexample to the converse of Lagrange’s theorem is
the alternating groupA4, which has 12 elements but no subgroup of order 6. We
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486 CHAPTER 7. STRUCTURE OF GROUPS (CONT’D)

note thatA4 is another example of a solvable group that is not nilpotent. It follows
from Theorem 7.4.1, the first Sylow theorem, that any finitep-group has subgroups
of all possible orders. This result can be easily extended to any group that is a direct
product ofp-groups. Thus the converse of Lagrange’s theorem holds for any finite
abelian group, and this argument will also show (see Corollary 7.8.5) that it holds
for any finite nilpotent group.

We first prove that any finite direct product of nilpotent groups is nilpotent.

7.8.2 Proposition. If G1, G2, . . ., Gn are nilpotent groups, then so is

G = G1× G2× · · · × Gn .

Proof. It is immediate that an element(a1,a2, . . . ,an) belongs to the centerZ(G)
of G if and only if each componentai belongs toZ(Gi ). Thus factoring outZ(G)
yields

G/Z(G) = (G1/Z(G1))× · · · × (Gn/Z(Gn)) .

Using the description of the center of a direct product of groups, we see that

Z2(G) = Z2(G1)× · · · × Z2(Gn) ,

and this argument can be continued inductively. Ifm is the maximum of the lengths
of the ascending central series for the factorsGi , then it is clear that the ascending
central series forG will terminate atG after at mostm terms. 2

The following theorem gives our primary characterization of nilpotent groups.
We first need a lemma about the normalizer of a Sylow subgroup.

7.8.3 Lemma. If P is a Sylowp-subgroup of a finite groupG, then the normalizer
N(P) is equal to its own normalizer inG.

Proof. SinceP is normal inN(P), it is the unique Sylowp-subgroup ofN(P). If g
belongs to the normalizer ofN(P), thengN(P)g−1

⊆ N(P), sogPg−1
⊆ N(P),

which implies thatgPg−1
= P. Thusg ∈ N(P). 2

7.8.4 Theorem.The following conditions are equivalent for any finite groupG.

(1) G is nilpotent;

(2) no proper subgroupH of G is equal to its normalizerN(H);

(3) every Sylow subgroup ofG is normal;

(4) G is a direct product of its Sylow subgroups.
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Proof. (1) implies (2): Assume thatG is nilpotent andH is a proper subgroup of
G. With the notationZ0(G) = {e}, letn be the largest index such thatZn(G) ⊆ H .
Then there existsa ∈ Zn+1(G) with a 6∈ H . For anyh ∈ H , the cosetsaZn(G)
andhZn(G) commute inG/Zn(G), soaha−1h−1

∈ Zn(G) ⊆ H , which shows that
aha−1

∈ H . Thusa ∈ N(H) − H , as required.
(2) implies (3): LetP be a Sylowp-subgroup ofG. By Lemma 7.8.3, the

normalizerN(P) is equal to its own normalizer inG, so by assumption we must
haveN(P) = G. This implies theP is normal inG.

(3) implies (4): LetP1, P2, . . ., Pn be the Sylow subgroups ofG, corresponding
to prime divisorsp1, p2, . . ., pn of |G|. We can show inductively thatP1 · · · Pi

∼=

P1× · · ·× Pi for i = 2, . . . ,n. This follows immediately from the observation that
(P1 · · · Pi )∩ Pi+1 = {e} because any element inPi+1 has an order which is a power
of pi+1, whereas the order of an element inP1 × · · · × Pi is pk1

1 · · · p
ki
i , for some

integersk1, . . . , kn.
(4) implies (3): This follows immediately from Proposition 7.8.2 and the fact

that anyp-group is nilpotent (see Theorem 7.6.3).2

7.8.5 Corollary. Let G be a finite nilpotent group of ordern. If m is any divisor of
n, thenG has a subgroup of orderm.

Proof. Let m= pα1
1 · · · p

αk
k be the prime factorization ofm. For each prime power

pαi
i , the corresponding Sylowpi -subgroup ofG has a subgroup of orderpαi

i . The
product of these subgroups has orderm, sinceG is a direct product of its Sylow
subgroups. 2

7.8.6 Lemma (Frattini’s Argument). Let G be a finite group, and letH be a
normal subgroup ofG. If P is any Sylow subgroup ofH , thenG = H · N(P), and
[G : H ] is a divisor of|N(P)|.

Proof. SinceH is normal inG, it follows that the productH N(P) is a subgroup of
G. If g ∈ G, thengPg−1

⊆ H sinceH is normal, and thusgPg−1 is also a Sylow
subgroup ofH . The second Sylow theorem (Theorem 7.7.4) implies thatP and
gPg−1 are conjugate inH , so there existsh ∈ H with h(gPg−1)h−1

= P. Thus
hg ∈ N(P), and sog ∈ H N(P), which shows thatG = H N(P).

It follows from the first isomorphism theorem (Theorem 7.1.1) thatG/H ∼=
N(P)/(N(P) ∩ H), and so|G/H | is a divisor of|N(P)|. 2

7.8.7 Proposition.A finite group is nilpotent if and only if every maximal subgroup
is normal.
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Proof. Assume thatG is nilpotent, andH is a maximal subgroup ofG. ThenH
is a proper subset ofN(H) by Theorem 7.8.4 and soN(H)must equalG, showing
that H is normal.

Conversely, suppose that every maximal subgroup ofG is normal, letP be any
Sylow subgroup ofG, and assume thatP is not normal. ThenN(P) is a proper
subgroup ofG, so it is contained in a maximal subgroupH , which is normal by
assumption. SinceP is a Sylow subgroup ofG, it is a Sylow subgroup ofH , so the
conditions of Lemma 7.8.6 hold, andG = H N(P). This is a contradiction, since
N(P) ⊆ H . 2

EXERCISES: SECTION 7.8

1. Show that the groupG is nilpotent ifG/Z(G) is nilpotent.

2. Show that each termZi (G) in the ascending central series of a groupG is a charac-
teristic subgroup ofG.

3. Show that any subgroup of a finite nilpotent group is nilpotent.

4. (a) Prove thatDn is solvable for alln.

(b) Find necessary and sufficient conditions onn such thatDn is nilpotent.

5. Use Theorem 7.8.7 to prove that any factor group of a finite nilpotent group is again
nilpotent.

7.9 Semidirect Products

The direct product of two groups does not allow for much complexity in the way in
which the groups are put together. For example, the direct product of two abelian
groups is again abelian. We now give a more general construction that includes some
very useful and interesting examples. We recall that a groupG is isomorphic to
N×K , for subgroupsN, K , provided (i)N andK are normal inG; (ii) N∩K = {e};
and (iii) N K = G. (See Theorem 7.1.3.)

7.9.1 Definition. Let G be a group with subgroupsN and K such that

(i) N is normal inG;

(ii) N ∩ K = {e}; and

(iii) N K = G.

ThenG is called thesemidirect productof N and K .
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Example 7.9.1 (S3 is a semidirect product).

Let S3 = {e,a,a2,b,ab,a2b} be the symmetric group on three elements, and
let N = {e,a,a2

} andK = {e,b}. Then the subgroupN is normal, and it is
clear thatN ∩ K = {e} andN K = G. ThusS3 is the semidirect product of
N andK . 2

The difference in complexity of direct products and semidirect products can be
illustrated by the following examples.

Example 7.9.2.

Let F be a field, letG1 be a subgroup of GLn(F), and letG2 be a subgroup
of GLm(F). The subset of GLn+m(F) given by{[

A1 0
0 A2

]∣∣∣∣ A1 ∈ G1, A2 ∈ G2

}
is easily seen to be isomorphic toG1× G2. 2

The above example suggests that since a matrix construction can be given for
certain direct products, we might be able to construct semidirect products by con-
sidering other sets of matrices.

Example 7.9.3.

Let F be a field, and letG be the subgroup of GL2(F) defined by

G =

{[
1 0
x a

]∣∣∣∣ x,a ∈ F, a 6= 0

}
.

For the product of two elements, withx1, a1, x2, a2 ∈ F , we have[
1 0
x1 a1

] [
1 0
x2 a2

]
=

[
1 0

x1+ a1x2 a1a2

]
.

The determinant defines a group homomorphismδ : G→ F×, where ker(δ)

is the set of matrices inG of the form

[
1 0
x 1

]
.Let N be the normal subgroup

ker(δ), and letK be the set of all matrices of the form

[
1 0
0 a

]
. It is clear

that N ∩ K is the identity matrix, and the computation[
1 0
x 1

] [
1 0
0 a

]
=

[
1 0
x a

]
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shows thatN K = G ThusG is the semidirect product ofN andK .

It is easy to check thatN ∼= F andK ∼= F×. Finally, we note that if−1 6= 1
in F , then for the elements

A =

[
1 0
1 1

]
and B =

[
1 0
0 −1

]
we haveB A= A−1B 6= AB, showing thatG is not abelian. 2

Example 7.9.4 (Construction ofHp)).

Let p be a prime number. We next consider theholomorph of Z p, which
we will denote byHp. It is defined as follows. (Recall thatZ×p is group of
invertible elements inZ p, and has orderp− 1.)

Hp =

{[
1 0

a21 a22

]∣∣∣∣a21 ∈ Z p, a22 ∈ Z×p

}
ThusHp is a subgroup of GL2(Z p), with subgroups

N =

{[
1 0

a21 a22

]∣∣∣∣a21 ∈ Z p, a22 = 1

}
and

K =

{[
1 0

a21 a22

]∣∣∣∣a21 = 0, a22 ∈ Z×p

}
.

It is clear thatN∩K = {e}, N K = Hp, and it can easily be checked thatN is
a normal subgroup isomorphic toZ p, andK is isomorphic toZ×p . ThusHp is
a semidirect product of subgroups isomorphic toZ p andZ×p , respectively. 2

Example 7.9.5.

The matrix construction of semidirect products can be extended to larger
matrices, in block form. LetF be a field, letG be a subgroup of GLn(F). and
let X be a subspace of then-dimensional vector spaceFn such thatAx ∈ X
for all vectorsx ∈ X and matricesA ∈ G. Then the set of all(n+1)×(n+1)

matrices of the form

[
1 0
x A

]
such thatx ∈ X andA ∈ G defines a group.

For example, we could letG be the subgroup of GL2(Z2) consisting of[
1 0
0 1

]
and

[
0 1
1 0

]
, and we could letX be the set of vectors

{[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]}
. 2
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Example 7.9.6 (Dn is a semidirect product).

Consider the dihedral groupDn, described by generatorsa of ordern andb
of order 2, with the relationba = a−1b. Then〈a〉 is a normal subgroup,
〈a〉 ∩ 〈b〉 = {e}, and〈a〉 〈b〉 = Dn. Thus the dihedral group is a semidirect
product of cyclic subgroups of ordern and 2, respectively. 2

We have said that a groupG is a semidirect product of its subgroupsN andK if
(i) N is normal; (ii) N ∩ K = {e}; and (iii) N K = G. This describes an “internal”
semidirect product. We now use the automorphism group to give a general definition
of an “external” semidirect product.

7.9.2 Definition. LetG be a multiplicative group, and letX be an abelian group, de-
noted additively. Letµ : G→ Aut(X) be a group homomorphism. Thesemidirect
product of X and G relative toµ is defined to be

X oµ G = {(x,a) | x ∈ X, a ∈ G}

with the operation(x1,a1)(x2,a2) = (x1 + µ(a1)[x2], a1a2), for x1, x2 ∈ X and
a1,a2 ∈ G.

For any multiplicative groupG and any additive groupX there is always the
trivial group homomorphismµ : G → Aut(X) which maps each element ofG to
the identity mapping in Aut(X). Using this homomorphism, the semidirect product
X oµ G reduces to the direct productX × G.

7.9.3 Proposition.LetG be a multiplicative group, letX be an additive group, and
letµ : G→ Aut(X) be a group homomorphism.

(a) The semidirect productX oµ G is a group.

(b) The set{(x,a) ∈ X oµ G | x = 0} is a subgroup ofX oµ G that is
isomorphic toG.

(c) The setN = {(x,a) ∈ X oµ G | a = e} is a normal subgroup ofX oµ G
that is isomorphic toX, and(X oµ G)/N is isomorphic toG.

Proof. (a) The associative law holds since

((x1,a1)(x2,a2))(x3,a3) = (x1+ µ(a1)[x2], a1a2)(x3,a3)

= ((x1+ µ(a1)[x2])+ µ(a1a2)[x3], (a1a2)a3)
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and

(x1,a1)((x2,a2)(x3,a3)) = (x1,a1)(x2+ µ(a2)[x3], a2a3)

= (x1+ µ(a1)[x2+ µ(a2)[x3]], a1(a2a3))

and these elements are equal because

µ(a1)[x2]+µ(a1a2)[x3] = µ(a1)[x2]+µ(a1)µ(a2)[x3] = µ(a1)[x2+µ(a2)[x3]] .

The element(0,e) is an identity, and the inverse of(x,a) is (µ(a)−1
[−x],a−1), as

shown by the following computation.

(x,a)(µ(a)−1
[−x],a−1) = (x + µ(a)µ(a)−1

[−x],aa−1) = (0,e)

(µ(a)−1
[−x],a−1)(x,a) = (µ(a)−1

[−x] + µ(a)−1
[x],a−1a) = (0,e)

(b) Defineφ : G→ X oµ G by φ(a) = (0,a), for all a ∈ G. It is clear thatφ
is a one-to-one homomorphism and that the imageφ(G) is the required subgroup.

(c) It is clear thatX is isomorphic toN. Defineπ : XoµG→ G byπ(x,a) = a,
for all (x,a) ∈ X oµ G. The definition of multiplication inX oµ G shows thatπ
is a homomorphism. It is onto, and ker(π) = N. The fundamental homomorphism
theorem shows that(X oµ G)/N ∼= G. 2

Example 7.9.7 (Hn).

Let X be the cyclic groupZn, withn ≥ 2. Example 7.1.6 shows that Aut(X) ∼=
Z×n , and ifµ : Z×n → Aut(X) is the isomorphism defined in Example 7.1.6,
we haveµ(a)[m] = am, for all a ∈ Z×n and allm ∈ Zn. ThusZn oµ Z×n has
the multiplication

(m1,a1)(m2,a2) = (m1+ a1m2,a1a2) .

If n is prime, this gives us the holomorphHp of Z p.

We can now give a more general definition. We say thatZn oµ Z×n is the
holomorph of Zn, denoted byHn. 2

Example 7.9.8.

Let X be the cyclic groupZn, with n ≥ 2. If θ : Z×n → Aut(X) maps each
element ofZ×n to the identity automorphism, thenZn oθ Z×n ∼= Zn × Z×n .
This illustrates the strong dependence ofX oθ G on the homomorphismθ ,
sinceHn is not abelian and hence cannot be isomorphic toZn × Z×n . 2
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Example 7.9.9 (Dn is a semidirect product).

We have already shown in Example 7.9.6 thatDn is an “internal” semidirect
product, using the standard generators and relations. We can now give an
alternate proof that the dihedral group is a semidirect product. Let

G =

{[
1 0

a21 a22

]∣∣∣∣a21 ∈ Zn, a22 = ±1 ∈ Z×n

}
.

The set we have defined is a subgroup of the holomorphHn of Zn.

If n > 2, then|G| = 2n, and for the elements

A =

[
1 0
1 1

]
and B =

[
1 0
0 −1

]
it can be checked thatA has ordern, B has order 2, andB A= A−1B. Thus
G is isomorphic toDn, and we have given an alternate construction ofDn, as
an “external” semidirect product.2

Let V be a vector space over the fieldF . Among other properties that must hold
for scalar multiplication, we have(ab)v = a(bv), 1v = v, anda(v+w) = av+aw,
for all a,b ∈ F and allv,w ∈ V . Thus if we letG be the multiplicative groupF×

of nonzero elements of a fieldF , then scalar multiplication defines an action ofG
on V . The formulaa(v + w) = av + aw provides an additional condition that is
very useful.

Let V be ann-dimensional vector space over the fieldF , and letG be any
subgroup of the general linear group GLn(F) of all invertiblen× n matrices over
F . The standard multiplication of (column) vectors by matrices defines a group
action ofG on V , since for any matricesA, B ∈ G and any vectorv ∈ V , we have
(AB)v = A(Bv) and Inv = v. The distributive lawA(v +w) = Av + Aw, for all
A ∈ G and allv,w ∈ V , gives us an additional property.

The previous example suggests a new definition.

7.9.4 Definition. Let G be a group and letX be an abelian group. IfG acts onX
and a(x + y) = ax + ay, for all a ∈ G and x, y ∈ X, then we say thatG acts
linearly on X.

The point of view of the next proposition will be useful in giving some more
interesting examples. It extends the result of Proposition 7.3.2, which states that
any group homomorphismG → Sym(S) defines an action ofG on the setS, and
conversely, that every action ofG on Sarises in this way.



494 CHAPTER 7. STRUCTURE OF GROUPS (CONT’D)

7.9.5 Proposition.LetG be a group and letX be an abelian group. Then any group
homomorphism fromG into the groupAut(X) of all automorphisms ofX defines a
linear action ofG on X. Conversely, every linear action ofG on X arises in this
way.

Proof. If X is an additive group, andφ : G → Aut(X), then for anya ∈ G the
functionλa = φ(a)must be a group homomorphism, soλa(x+y) = λa(x)+λa(y),
for all x, y ∈ X. Thusa(x + y) = ax+ ay.

Conversely, assume thatG acts linearly onS, anda ∈ G. Then it is clear thatλa

defined byλa(x) = ax for x ∈ Smust be a group homomorphism. Thusφ defined
by φ(a) = λa actually mapsG to Aut(S). 2

Let G be any group, and letX be an abelian group. For any homomorphism
µ : G → Aut(X) we defined the semidirect productX oµ G. We now know
that such homomorphisms correspond to linear actions ofG on X. If we have
any such linear action, we can define the multiplication inX oµ G as follows:
(x1,a1)(x2,a2) = (x1 + a1x2,a1a2), for all x1, x2 ∈ X anda1,a2 ∈ G. Thus the
concept of a linear action can be used to simplify the definition of the semidirect
product.

We now give another characterization of semidirect products.

7.9.6 Proposition. Let G be a multiplicative group with a normal subgroupN,
and assume thatN is abelian. Letπ : G → G/N be the natural projection. The
following conditions are equivalent:

(1) There is a subgroupK of G such thatN ∩ K = {e} and N K = G;

(2) There is a homomorphismε : G/N → G such thatπε = 1G/N ;

(3)There is a homomorphismµ : G/N → Aut(N) such thatNoµ(G/N) ∼= G.

Proof. (1) implies (2): Letµ : K → G/N be the restriction ofπ to K . Then
ker(µ) = ker(π)∩ K = N ∩ K = {e}, andµ is onto since ifg ∈ G, thenG = N K
impliesg = ab for somea ∈ N, b ∈ K , and sog ∈ Nb, showing thatNg= µ(b).
If we let ε = µ−1, thenπε = µµ−1 is the identity function onG/N.

(2) implies (3): To simplify the notation, letG/N = H . Defineµ : H →
Aut(X) as follows. Fora ∈ H , defineµ(a) by lettingµ(a)[x] = ε(a)xε(a)−1, for
all x ∈ N. We note thatµ(a)[x] ∈ N sinceN is a normal subgroup. We first show
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thatµ(a) is a group homomorphism, for alla ∈ H . We have

µ(a)[xy] = ε(a)xyε(a)−1

= ε(a)xε(a)−1ε(a)yε(a)−1

= µ(a)[x]µ(a)[y] ,

for all x, y ∈ N. We next show thatµ is a group homomorphism. For alla,b ∈ H
and allx ∈ N, we have

µ(ab)[x] = ε(ab)xε(ab)−1

= ε(a)ε(b)xε(b)−1ε(a)−1

= µ(a)[µ(b)[x]] = µ(a)µ(b)[x] .

Sinceµ(e)[x] = ε(e)xε(e)−1
= x for all x ∈ N, the previous computation shows

thatµ(a−1) is the inverse ofµ(a), verifying thatµ(a) is an automorphism for all
a ∈ H .

Usingµ, we constructNoµ H , and then defineφ : Noµ H → G byφ(x,a) =
xε(a), for all (x,a) ∈ N oµ H . Thenφ is one-to-one sinceφ((x,a)) = e implies
ε(a) ∈ N, and soπε(a) = e, whencea = e and thereforex = e.

Giveng ∈ G, leta = π(g)andx = gεπ(g−1). Thenπ(x) = π(g)πεπ(g−1) =

π(g)π(g−1) = e, and sox ∈ N. Thusφ is onto, sinceφ((x,a)) = xε(a) =
gεπ(g−1)επ(g) = g.

Finally, we must show thatφ is a homomorphism. For(x1,a1), (x2,a2) ∈

N oµ H we have

φ((x1,a1)(x2,a2)) = φ((x1ε(a1)x2ε(a1)
−1, a1a2))

= (x1ε(a1)x2ε(a1)
−1)ε(a1a2)

= x1ε(a1)x2ε(a2)

= φ((x1,a1))φ((x2,a2)) .

(3) implies (1): If G ∼= N oµ (G/N), then the subgroups{(x,e)} ∼= N and
{(e,a)} ∼= G/N have the required properties.2

EXERCISES: SECTION 7.9

1. LetC2 be the subgroup{±1} of Z×n , and letC2 act onZn via the ordinary multipli-
cationµ of congruence classes. Prove thatZn oµ C2 is isomorphic toDn.
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2. LetG be the subgroup of GL2(Q) generated by the matrices[
0 1
1 0

]
and

[
0 1
−1 0

]
.

Show thatG is a group of order 8 that is isomorphic toD4.

3. LetG be the subgroup of GL3(Z2) generated by the matrices 1 0 0
0 0 1
0 1 0

 ,

 1 0 0
1 1 0
0 0 1

 ,

 1 0 0
0 1 0
1 0 1

 .

(a) Show thatG is a group of order 8 that is isomorphic toD4.

(b) Define an actionµ of Z2 on Z2 × Z2 by 0(x, y) = (x, y) and 1(x, y) = (y, x).
Show thatG is isomorphic to(Z2× Z2)oµ Z2.

4. Show that the quaternion group cannot be written as a semidirect product of two
proper subgroups.

5. Prove thatSn is isomorphic to a semidirect productAn o Z2.

6. Show that ifn > 2, thenZn o Z×n is solvable but not nilpotent.

7. Let p be a prime, and letG be the subgroup of GL3(Z p) consisting of all matrices
of the form  1 0 0

a 1 0
b c 1

 .

Show thatG is isomorphic to a semidirect product ofZ p × Z p andZ p.

7.10 Classification of Groups of Small Order

In this section we study finite groups of a manageable size. Our first goal is to
classify all groups of order less than 16 (at which point the classification becomes
more difficult). Of course, any group of prime order is cyclic, and simple abelian.

A group of order 4 is either cyclic, or else each nontrivial element has order 2,
which characterizes the Klein four-group. There is only one possible pattern for this
multiplication table, but there is no guarantee that the associative law holds, and so
it is necessary to give a model such asZ2× Z2 or Z×8 .

7.10.1 Proposition.Any nonabelian group of order6 is isomorphic toS3.

Proof. This follows immediately from Proposition 7.4.5.2
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7.10.2 Proposition.Any nonabelian group of order8 is isomorphic either toD4 or
to the quaternion groupQ8.

Proof. If G had an element of order 8, thenG would be cyclic, and hence abelian.
If each element ofG had order 1 or 2, then we would havex2

= e for all x ∈ G,
so(ab)2 = a2b2 for all a,b ∈ G, andG would be abelian. ThusG must contain at
least one element of order 4.

Let a be an element of order 4, and letN = 〈a〉. SinceN has index 2, there are
precisely 2 cosets, given byN andbN, for any elementb 6∈ N. Thus there exists
an elementb such thatG = N ∪ bN.

For the elements given in the previous part, eitherb2
= e or b2

= a2. To show
this, sinceN is normal, considerG/N. We have(bN)2 = N, and sob2

∈ N. Since
b4
= e (there are no elements of order 8) we have(b2)2 = e. In N the only elements

that satisfyx2
= e aree anda2, so eitherb2

= e or b2
= a2.

We next show thatbab−1 has order 4 and must be equal toa3. We have
(bab−1)4 = ba4b−1

= bb−1
= e. If (bab−1)2 = e, thenba2b−1

= e and so
a2
= e, a contradiction to the choice ofa. Henceo(bab−1) = 4. If bab−1

= a,
thenab= baand we haveG = N·〈b〉and soG would be abelian. Thusbab−1

= a3.
We have shown thatG contains elementsa,b such thata4

= e, bab−1
= a3,

andb2
= eor b2

= a2. If a4
= e, b2

= e, andbab−1
= a3, thenG is isomorphic to

the dihedral groupD4. If a4
= e, b2

= a2, andbab−1
= a3, thenG is isomorphic

to the quaternion groupQ8. 2

We can now determine (up to isomorphism) almost all groups of order less
than 16. A group of order 9 must be abelian by Corollary 7.2.9, and then its
structure is determined by Theorem 7.5.6. Proposition 7.4.5 determines the possible
groups of order 10 and 14. determines the possible groups of order 10 and 14.
Proposition 7.4.6 implies that a group of order 15 is cyclic. The remaining problem
is to classify the groups of order 12.

7.10.3 Proposition.Let G be a finite group.

(a) Let N be a normal subgroup ofG. If there exists a subgroupH such that
H ∩ N = {e} and|H | = [G : N], thenG ∼= N o H .

(b) Let G be a group with|G| = pnqm, for primes p,q. If G has a unique
Sylow p-subgroupP, and Q is any Sylowq-subgroup ofG, thenG ∼= P o Q.
Furthermore, ifQ′ is any other Sylowq-subgroup, thenP o Q′ is isomorphic to
P o Q.

(c) LetG be a group with|G| = p2q, for primesp,q. ThenG is isomorphic to
a semidirect product of its Sylow subgroups.
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Proof. (a) The natural inclusion followed by projection defines a homomorphism
H → G→ G/N with kernelH ∩ N. SinceH ∩ N = {e} and|H | = [G : N], this
mapping is an isomorphism, and thus each left coset ofG/N has the formhN for
someh ∈ H . For anyg ∈ G we haveg ∈ hN for someh ∈ H , and soG = H N.

(b) The first statement follows from the part (a), since|Q| = |G|/|P|.
If Q′ is any other Sylowq-subgroup, thenQ′ = gQg−1 for someg ∈ G, since

Q′ is conjugate toQ. Recall that the action ofQ on P is given bya ∗ x = axa−1,
for all a ∈ Q and all x ∈ P. Define8 : P o Q → P o Q′ by 8(x,a) =
(gxg−1, gag−1), for all x ∈ P, a ∈ Q. The mapping is well-defined sinceP is
normal andQ′ = gQg−1. Forx1, x2 ∈ P anda1,a2 ∈ Q we have

8((x1,a1))8((x2,a2)) = (gx1g−1, ga1g−1)(gx2g−1, ga2g−1)

= (gx1g−1ga1g−1gx2g−1(ga1g−1)−1, ga1g−1ga2g−1)

= (gx1g−1ga1g−1gx2g−1ga−1
1 g−1, ga1g−1ga2g−1)

= (gx1a1x2a
−1
1 g−1, ga1a2g−1)

= 8((x1a1x2a
−1
1 ,a1a2)) = 8((x1,a1)(x2,a2)) .

Thus8 is a homomorphism.
(c) If p > q, thenq 6≡ 1 (mod p), so there must be only one Sylowp-subgroup,

which is therefore normal. Ifp < q, then p 6≡ 1 (mod q), and so the number of
Sylow q-subgroups must be 1 orp2. In the first case, the Sylowq-subgroup is
normal. If there arep2 Sylow q-subgroups, then there must bep2(q − 1) distinct
elements of orderq, so there can be at most one Sylowp-subgroup. 2

7.10.4 Lemma.Let G, X be groups, letα, β : G → Aut(X), and letµ, η be the
corresponding linear actions ofG on X. ThenX oµ G ∼= X oη G if there exists
φ ∈ Aut(G) such thatβ = αφ.

Proof. Assume thatφ ∈ Aut(G) with β = αφ. For anya ∈ G we haveβ(a) =
α(φ(a)), and so for anyx ∈ X we must haveη(a, x) = µ(φ(a), x). Define
8 : X oη G→ X oµ G by8(x,a) = (x, φ(a)) for all x ∈ X anda ∈ G. Since
φ is an automorphism, it is clear that8 is one-to-one and onto. Forx1, x2 ∈ X and
a1,a2 ∈ G, we have

8((x1,a1))8((x2,a2)) = (x1, φ(a1))(x2, φ(a2))

= (x1µ(φ(a1), x2), φ(a1)φ(a2))

= (x1η(a1, x2), φ(a1a2)) = 8((x1η(a1, x2),a1a2))

= 8((x1,a1)(x2,a2)) .

ThusX oη G ∼= X oµ G. 2
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7.10.5 Proposition.Any nonabelian group of order12 is isomorphic toA4, D6, or
Z3o Z4.

Proof. Let G be a group of order 12. The Sylow 2-subgroup must be isomorphic
to Z4 or Z2× Z2, while the Sylow 3-subgroup must be isomorphic toZ3. Thus we
must find all possible semidirect products of the four combinations.

Case (i):Z4o Z3

Since Aut(Z4) = Z×4 ∼= Z2, there are no nontrivial homomorphisms fromZ3 into
Aut(Z4). Therefore this case reduces toZ4× Z3

∼= Z12.

Case (ii):(Z2× Z2)o Z3

Since Aut(Z2×Z2) ∼= S3 andS3 has a unique subgroup of order 3, there two possible
nontrivial homomorphisms fromZ3 into S3, but they define isomorphic groups by
Proposition 7.10.4. The groupA4 has a unique Sylow 2-subgroup isomorphic to
Z2× Z2, and so we must have(Z2× Z2)o Z3

∼= A4.

Case (iii):Z3o (Z2× Z2)

Since Aut(Z3) = Z×3 ∼= Z2, there are 3 nontrivial homomorphisms fromZ2 × Z2

into Aut(Z3), but they define isomorphic semidirect products, by Proposition 7.10.4.
It can be shown thatZ3o (Z2× Z2) ∼= D6.

Case (iv):Z3o Z4

There is only one nontrivial homomorphism fromZ4 into Aut(Z3), in whichµ(1)
corresponds to multiplication by 2. It is left as an exercise to show that this group
is isomorphic to the one called “T” by Hungerford. 2

The following table summarizes the information that we have gathered.

Order Groups Order Groups
2 Z2 9 Z9, Z3× Z3

3 Z3 10 Z10, D5

4 Z4, Z2× Z2 11 Z11

5 Z5 12 Z12, Z6× Z2

6 Z6, S3 A4, D6, Z3o Z4

7 Z7 13 Z13

8 Z8, Z4× Z2, Z2× Z2× Z2 14 Z14, D7

D4, Q8 15 Z15

We now turn our attention to another question. The list of simple nonabelian
groups that we know containsAn, for n > 4, (by Theorem 7.7.4), and PSL2(F),
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whereF is a finite field with|F | > 3 (by Theorem 7.7.9). The smallest of these
groups areA5 andPSL2(Z5), each having 60 elements. Exercise 7.7.9 shows that
in fact they are isomorphic.

It is not difficult to show thatA5 is the smallest nonabelian simple group. IfG
is a group of ordern, thenG is abelian ifn is prime, and has a nontrivial center
(which is normal) ifn is a prime power. Ifn = p2q, wherep,q are distinct primes,
then we have shown thatG is a semidirect product of its Sylow subgroups, and so
G is not simple. These results cover all numbers less than 60, with the exception of
30, 36, 40, 42, 48, 54, and 56.

Example 7.4.2 shows that a group of order 30 cannot be simple. It is easy to
check the following: in a group of order 40, the Sylow 5-subgroup is normal; in
a group of order 42, the Sylow 7-subgroup is normal; in a group of order 54, the
Sylow 3-subgroup is normal. The casen = 56 is left as an easy exercise.

We will use the following proposition to show that no group of order 36 or 48
can be simple, which finishes the argument.

7.10.6 Proposition.Let G be a finite simple group of ordern, and let H be any
proper, nontrivial subgroup ofG.

(a) If k = [G : H ], thenn is a divisor ofk!.

(b) If H hasm conjugates, thenn is a divisor ofm!.

Proof. (a) Let S be the set of left cosets ofH , and letG act onS by defining
a ∗ x H = (ax)H , for all a, x ∈ G. For any left cosetx H and anya,b ∈ G,
we havea(bx H) = (ab)x H. Sincee(x H) = (ex)H = x H, this does define a
group action. The corresponding homomorphismφ : G → Sym(S) is nontrivial,
soφ must be one-to-one sinceG is simple. Therefore Sym(S) contains a subgroup
isomorphic toG, and son is a divisor ofk! = |Sym(S)|.

(b) Let Sbe the set of subgroups conjugate toH , and define an action ofG on
Sas in Example 7.3.7, by lettinga ∗ K = aKa−1, for all a ∈ G and allK ∈ S. In
this case,|Sym(S)| = m!, and the proof follows as in part (a).2

7.10.7 Proposition. The alternating groupA5 is the smallest nonabelian simple
group.

Proof. Assuming the result in Exercise 1 the proof can now be completed by
disposing of the casesn = 36 andn = 48. For a group of order 36, there must be
either 1 or 4 Sylow 3-subgroups. Since 36 is not a divisor of 4!, the group cannot
be simple. For a group of order 48, there must be either 1 or 3 Sylow 2-subgroups.
Since 48 is not a divisor of 3!, the group cannot be simple.2
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EXERCISES: SECTION 7.10

1. Complete the proof thatA5 is the smallest nonabelian simple group by showing that
there is no simple group of order 56.

2. Prove that the automorphism group ofZ2× Z2 is isomorphic toS3.

3. Show that the nonabelian groupZ3o (Z2× Z2) is isomorphic to the dihedral group
D6.

4. Show that the nonabelian groupZ3o Z4 is generated by elementsa of order 6, and
b of order 4, subject to the relationsb2

= a3 andba= a−1b.
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