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Chapter 7

STRUCTURE OF GROUPS
(cont’d)

7.8 Nilpotent Groups

We now define and study a class of solvable groups that includes all finite abelian
groups and all finitgp-groups. This class has some rather interesting properties.

7.8.1 Definition. For a groupG we define thascending central serieZ,(G) C
Z>(G) C --- of G as follows:

Z1(G) is the centeiZ(G) of G;

Z>(G) is the unique subgroup @ with Z,(G) C Z,(G) andZ,(G)/Z1(G) =
Z(G/Z4(G)).

We definegZ; (G) inductively, so thaZ; (G)/Zi_1(G) = Z(G/Z;_1(G)).

The groupG is callednilpotentif there exists a positive integamwith Z,(G) =
G.

We first note that any abelian group is nilpotent. We next note that any nilpotent
group is solvable, since the factor groufis1(G)/Z; (G) are abelian. We also note
that these classes are distinct. The proof of Theorem 7.6.3 shows that any finite
p-group is nilpotent, so the group of quaternion units provides an example of a
group that is nilpotent but not abelian. The symmetric gr8yis solvable, but it is
not nilpotent since its center is trivial.

We will show that the converse of Lagrange’s theorem holds for nilpotent groups.
Recall that the standard counterexample to the converse of Lagrange’s theorem is
the alternating groug\4, which has 12 elements but no subgroup of order 6. We
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486 CHAPTER 7. STRUCTURE OF GROUPS (CONT’D)

note thatA, is another example of a solvable group that is not nilpotent. It follows
from Theorem 7.4.1, the first Sylow theorem, that any fipigroup has subgroups
of all possible orders. This result can be easily extended to any group that is a direct
product ofp-groups. Thus the converse of Lagrange’s theorem holds for any finite
abelian group, and this argument will also show (see Corollary 7.8.5) that it holds
for any finite nilpotent group.

We first prove that any finite direct product of nilpotent groups is nilpotent.

7.8.2 Proposition. If G,, G, ..., G, are nilpotent groups, then so is
GC=G; xGyx- - xGp.

Proof. Itisimmediate that an elemefd,, ay, ..., a,) belongs to the centet (G)
of G if and only if each componers belongs toZ(G;). Thus factoring ouZ (G)
yields

G/Z(G) = (G1/Z(G1)) x - -+ x (Gn/Z(Gp)) .

Using the description of the center of a direct product of groups, we see that
Z3(G) = Z3(Gy) x -+ - x Z3(Gp) ,

and this argument can be continued inductivelyn i the maximum of the lengths
of the ascending central series for the fac@rsthen it is clear that the ascending
central series fo6 will terminate atG after at mosm terms. O

The following theorem gives our primary characterization of nilpotent groups.
We first need a lemma about the normalizer of a Sylow subgroup.

7.8.3 Lemma.If P is a Sylowp-subgroup of a finite grou, then the normalizer
N(P) is equal to its own normalizer i®.

Proof. SinceP is normalinN (P), itis the unique Sylowp-subgroup oN(P). If g
belongs to the normalizer & (P), thengN(P)g~! € N(P), sogPg* € N(P),
which implies thagPg™t = P. Thusg € N(P). O

7.8.4 Theorem. The following conditions are equivalent for any finite graBp
(1) Gis nilpotent;
(2) no proper subgrougd of G is equal to its normalizeN (H);
(3) every Sylow subgroup @ is normal;
(4) G is a direct product of its Sylow subgroups.
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Proof. (1) implies (2): Assume thds is nilpotent andH is a proper subgroup of
G. With the notationzZo(G) = {e}, letn be the largest index such that(G) € H.
Then there exista € Z,,1(G) with a ¢ H. For anyh € H, the cosetaZ,(G)
andh Z,(G) commute inG/Z,(G), soaha*h~! € Z,(G) € H, which shows that
aha™! e H. Thusa e N(H) — H, as required.

(2) implies (3): LetP be a Sylowp-subgroup ofG. By Lemma 7.8.3, the
normalizerN (P) is equal to its own normalizer ifs, so by assumption we must
haveN(P) = G. This implies theP is normal inG.

(3) implies (4): LetPy, Py, ..., P, be the Sylow subgroups &, corresponding
to prime divisorsps, p2, ..., pn Of |G|. We can show inductively thd®, - -- P =
P.x.--x B fori =2,...,n. This follows immediately from the observation that
(Py--- B)N P, = {e} because any element B, ; has an order which is a power
of piy1, whereas the order of an elementfpx --- x P, is p'f e piki, for some
integersky, ..., ky.

(4) implies (3): This follows immediately from Proposition 7.8.2 and the fact
that anyp-group is nilpotent (see Theorem 7.6.313

7.8.5 Corollary. Let G be a finite nilpotent group of order. If mis any divisor of
n, thenG has a subgroup of orden.

Proof. Letm = p{*--- p* be the prime factorization @h. For each prime power
p, the corresponding Sylow;-subgroup ofG has a subgroup of ordes™. The
product of these subgroups has ordersinceG is a direct product of its Sylow
subgroups. O

7.8.6 Lemma (Frattini's Argument). Let G be a finite group, and leH be a
normal subgroup o6. If P is any Sylow subgroup ¢, thenG = H - N(P), and
[G : H]is adivisor of|[N(P)|.

Proof. SinceH is normal inG, it follows that the producH N (P) is a subgroup of
G. If g € G, thengPg! € H sinceH is normal, and thugPg* is also a Sylow
subgroup ofH. The second Sylow theorem (Theorem 7.7.4) implies thaind
gPg ! are conjugate irH, so there existd € H with h(gPg)h~! = P. Thus
hg € N(P), and sog € HN(P), which shows thaG = HN(P).

It follows from the first isomorphism theorem (Theorem 7.1.1) BaH =
N(P)/(N(P)n H),and sqG/H| is a divisor of[N(P)|. O

7.8.7 Proposition. A finite group is nilpotent if and only if every maximal subgroup
is normal.
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Proof. Assume that is nilpotent, andH is a maximal subgroup d6. ThenH
is a proper subset & (H) by Theorem 7.8.4 and 99(H) must equals, showing
thatH is normal.

Conversely, suppose that every maximal subgroup @&f normal, letP be any
Sylow subgroup of5, and assume tha is not normal. TherN(P) is a proper
subgroup ofG, so it is contained in a maximal subgrotfy which is normal by
assumption. SincP is a Sylow subgroup d&, it is a Sylow subgroup ofl, so the
conditions of Lemma 7.8.6 hold, artel = HN(P). This is a contradiction, since
N(P)CH. O

EXERCISES: SECTION 7.8

=

. Show that the grou is nilpotent if G/ Z(G) is nilpotent.

2. Show that each terid; (G) in the ascending central series of a gr@hiis a charac-
teristic subgroup o6.

3. Show that any subgroup of a finite nilpotent group is nilpotent.

4. (a) Prove thaby, is solvable for alh.
(b) Find necessary and sufficient conditionsrosuch thatDy, is nilpotent.

5. Use Theorem 7.8.7 to prove that any factor group of a finite nilpotent group is again
nilpotent.

7.9 Semidirect Products

The direct product of two groups does not allow for much complexity in the way in
which the groups are put together. For example, the direct product of two abelian
groupsis again abelian. We now give a more general construction thatincludes some
very useful and interesting examples. We recall that a g®up isomorphic to

N x K, for subgroup$N, K, provided ()N andK are normal irG; (i) NNK = {e};

and (i) NK = G. (See Theorem 7.1.3.)

7.9.1 Definition. Let G be a group with subgroup andK such that
() N is normal inG;
(i) NN K = {e}; and
(i) NK = G.

ThenG is called thesemidirect productf N and K.



7.9. SEMIDIRECT PRODUCTS 489

Example 7.9.1 & is a semidirect product).

LetSs = {e, a, a2, b, ab, a?b} be the symmetric group on three elements, and
let N = {e, a, a®} andK = {e, b}. Then the subgroupl is normal, and it is
clear thatN N K = {e} andN K = G. ThusS; is the semidirect product of

N andK. O

The difference in complexity of direct products and semidirect products can be
illustrated by the following examples.

Example 7.9.2.

Let F be a field, letG1 be a subgroup of Gi(F), and letG, be a subgroup
of GLm(F). The subset of Gk m(F) given by

At O
H: 01 AziHAleGl, AzEGz}

is easily seen to be isomorphic@& x G,. O
The above example suggests that since a matrix construction can be given for

certain direct products, we might be able to construct semidirect products by con-
sidering other sets of matrices.

Example 7.9.3.
Let F be afield, and leG be the subgroup of GI(F) defined by

G:{[l 0} X,a e F, a;éo}.

X a

For the product of two elements, wifi, a1, X2, a € F, we have

1 07[1 07_ 1 0
X1 a X2 @ || xataxe aap |

The determinant defines a group homomorphisnG — F*, where ke(s)

isthe setof matrices iG oftheform[ )1( 0 } .LetN bethe normal subgroup

1
1

ker(s), and letK be the set of all matrices of the for[n 0

0 ] .ltis clear
a

thatN N K is the identity matrix, and the computation

L lle )=h sl
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shows thalN K = G ThusG is the semidirect product df andK.

Itis easy to check thail = F andK = F*. Finally, we note that i1 # 1
in F, then for the elements

1 0 1 0
A:[l 1] and B:[O —1]

we haveB A= A~1B # AB, showing thaG is not abelian. O

Example 7.9.4 (Construction ofH )).

Let p be a prime number. We next consider th@omorph of Z,, which
we will denote byH . Itis defined as follows. (Recall thitg is group of
invertible elements i p, and has ordep — 1.)

1 0 ]
| Q21 a2 |

Hp={ a1 € Zp, azzezg}

ThusH, is a subgroup of G(Z ), with subgroups

N:{ 10
| @21 az2 |

1€ ”Zp, ap= 1}

and

_ 1 0 _ «
K_H: a1 a22:| ap1 =0, azzezp} .

Itis clear thatN NK = {e}, NK = Hp, and it can easily be checked théis
a normal subgroup isomorphicZ,, andK is isomorphic taZ 5. ThusHpis
a semidirect product of subgroups isomorphiz gpandZ ;, respectively. O

Example 7.9.5.

The matrix construction of semidirect products can be extended to larger
matrices, in block form. Leff be afield, letG be a subgroup of GI(F). and
let X be a subspace of thedimensional vector spade” such thatAx € X
for all vectorsx € X and matriceA € G. Thenthe setofalin+1) x (n+1)

matrices of the forrr[ i 2 } such thaix € X andA € G defines a group.

For example, we could leG be the subgroup of GI(Z,) consisting of

[ (1) 2 ] and[ 2 é ] and we could leX be the set of vectors

o] L] [3] [5]}-e
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Example 7.9.6 Dy, is a semidirect product).

Consider the dihedral group,, described by generatoasof ordern andb

of order 2, with the relatioma = a~'b. Then(a) is a normal subgroup,
(a) N (b) = {e}, and(a) (b) = Dy. Thus the dihedral group is a semidirect
product of cyclic subgroups of ordarand 2, respectively. O

We have said that a grodpis a semidirect product of its subgroudsandK if
(i) N is normal; (i) N N K = {e}; and (iii) NK = G. This describes an “internal”
semidirect product. We now use the automorphism group to give a general definition
of an “external” semidirect product.

7.9.2 Definition. LetG be a multiplicative group, and leé{ be an abelian group, de-
noted additively. Lett : G — Aut(X) be a group homomorphism. Themidirect
product of X and G relative tou is defined to be

Xx,G={Xxa)|xeX, aecG}

with the operation(xy, a;) (X2, @) = (X1 + w(a)[X2], aiap), for x3, X, € X and
a;, a € G.

For any multiplicative groufs and any additive grouiX there is always the
trivial group homomorphisnu : G — Aut(X) which maps each element &fto
the identity mapping in AutX). Using this homomorphism, the semidirect product
X x,, G reduces to the direct produkt x G.

7.9.3 Proposition. Let G be a multiplicative group, leX be an additive group, and
let u : G — Aut(X) be a group homomorphism.

(a) The semidirect producX x, G is a group.

(b) The set{(x,a) € X x, G | x = 0} is a subgroup ofX x, G that is
isomorphic toG.

(c) The setN = {(x,a) € X x,, G | a = €} is a normal subgroup oK x, G
that is isomorphic toX, and (X x, G)/N is isomorphic toG.

Proof. (a) The associative law holds since

(X1, ) (X2, @) (X3, @3) = (X1 + p(an)[xe], a1@2) (X3, az)
= (X1 + p(a) X)) + n(@az)[xsl, (a1a2)az)
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and

(X1, a)((X2, @) (X3, @3)) = (X1, a1)(X2 + w(a)[X3], axaz)
= (Xg + p(a)[X2 + u(@)[x3]], ai(azaz))

and these elements are equal because

w(ag)[Xe] + u(ardz)[Xs] = w(ag)[Xe] + w(ar) u(az)[Xs] = (@) [xz + n(@2)[xsl] .

The element0, e) is an identity, and the inverse ¢f, a) is (u(a)~[—x],a™1), as
shown by the following computation.

x, @ [-xl,ah = xX+u@p@ -xl,aa ) = (0,e
(r@-xl,ahx,a = @@ -x]+ur@xl,ata) = (0,e)

(b) Defineg : G — X x, Gby¢(a) = (0,a), foralla € G. Itis clear thatp
is a one-to-one homomorphism and that the ima@®) is the required subgroup.
(c) Itisclear thai isisomorphic td\. Definer : X%, G — Gbyn(x, a) = a,
for all (x,a) € X x, G. The definition of multiplication inX x, G shows thatr
is a homomorphism. Itis onto, and Ker = N. The fundamental homomorphism
theorem shows thaX x, G)/N =G. O

Example 7.9.7 Hn).

Let X bethe cyclicgrougp, withn > 2. Example 7.1.6 shows that Ax) =
ZX,andifu : Zy — Aut(X) is the isomorphism defined in Example 7.1.6,
we haveu(a)[m] = am, foralla € Z}y and allm € Z,. ThusZ, %, Z; has
the multiplication

(Mg, a1)(Mg, az) = (Mg + ayMy, a1a) .

If nis prime, this gives us the holomorgy, of Z .

We can now give a more general definition. We say thatx,, Z is the
holomorph of Zy, denoted byH,. O

Example 7.9.8.

Let X be the cyclic grouZp, withn > 2. If 6 : Z — Aut(X) maps each
element ofZ; to the identity automorphism, thety, xp ZS = Zp x Zf.
This illustrates the strong dependenceXoky G on the homomorphisré,
since’H;, is not abelian and hence cannot be isomorphigfoc Z5. O
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Example 7.9.9 Dy, is a semidirect product).

We have already shown in Example 7.9.6 tBgtis an “internal” semidirect
product, using the standard generators and relations. We can now give an
alternate proof that the dihedral group is a semidirect product. Let

~{| o)
ap1 aze

The set we have defined is a subgroup of the holomatplof Z,.

ax1 € Zn, a22::i:1€Zr>1<} .

If n > 2, then|G| = 2n, and for the elements

1 0 1 0
A:[l 1] and B:[O _1]

it can be checked thak has orden, B has order 2, an8 A= A~1B. Thus
G is isomorphic taDp, and we have given an alternate constructiodgf as
an “external” semidirect product.C

LetV be a vector space over the fidkd Among other properties that must hold
for scalar multiplication, we hav@b)v = a(bv), v = v, anda(v+w) = av+aw,
foralla,b € F and allv, w € V. Thus if we letG be the multiplicative groufs-*
of nonzero elements of a fiel, then scalar multiplication defines an action®f
onV. The formulaa(v + w) = av + aw provides an additional condition that is
very useful.

Let V be ann-dimensional vector space over the fidtd and letG be any
subgroup of the general linear group GE) of all invertiblen x n matrices over
F. The standard multiplication of (column) vectors by matrices defines a group
action of G on V, since for any matriceé,, B € G and any vector € V, we have
(AB)v = A(Bv) andl,v = v. The distributive lawA(v + w) = Av + Aw, for all
A e G andallv, w € V, gives us an additional property.

The previous example suggests a new definition.

7.9.4 Definition. Let G be a group and leX be an abelian group. 16 acts onX
anda(x + y) = ax+ ay, foralla € G andx, y € X, then we say thaG acts
linearly on X.

The point of view of the next proposition will be useful in giving some more
interesting examples. It extends the result of Proposition 7.3.2, which states that
any group homomorphisit® — Sym(S) defines an action d& on the setS, and
conversely, that every action & on S arises in this way.
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7.9.5 Proposition. LetG be a group and leX be an abelian group. Then any group
homomorphism fror® into the groupAut(X) of all automorphisms oX defines a
linear action of G on X. Conversely, every linear action & on X arises in this
way.

Proof. If X is an additive group, and : G — Aut(X), then for anya € G the
functioni, = ¢ (a) must be a group homomorphisms@x—+Yy) = Aa(X) +Aa(y),
forall x, y € X. Thusa(x + y) = ax + ay.

Conversely, assume th@tacts linearly ors, anda € G. Thenitis clear that,
defined byr,(x) = ax for x € Smust be a group homomorphism. Thuslefined
by ¢ () = A, actually mapss to Aut(S). O

Let G be any group, and leX be an abelian group. For any homomorphism
w: G — Aut(X) we defined the semidirect produkt x, G. We now know
that such homomorphisms correspond to linear action§ @in X. If we have
any such linear action, we can define the multiplicatiorXin«,, G as follows:
(X1, 1) (X2, &) = (X1 + a1Xo, ua), for all X1, X, € X anday, a, € G. Thus the
concept of a linear action can be used to simplify the definition of the semidirect
product.

We now give another characterization of semidirect products.

7.9.6 Proposition. Let G be a multiplicative group with a normal subgroup,
and assume thall is abelian. Letr : G — G/N be the natural projection. The
following conditions are equivalent:

(1) There is a subgrou of G suchthatN N K = {e} andNK = G;
(2) There is a homomorphise: G/N — G such thatre = 1g)n;
(3) Thereisahomomorphism: G/N — Aut(N) suchthaiN x,(G/N) = G.

Proof. (1) implies (2): Letu : K — G/N be the restriction ofr to K. Then
ker(u) = ker(m)NK = NN K = {e}, andu is onto since ifg € G, thenG = NK
impliesg = abfor somea € N, b € K, and sag € Nb, showing thalNg = u(b).
If we lete = ut, thenme = up~tis the identity function orG/N.

(2) implies (3): To simplify the notation, le&6/N = H. Defineu : H —
Aut(X) as follows. Fora € H, defineu(a) by lettingu(a)[x] = e(@)xe(a)~?, for
all x € N. We note thaj.(a)[x] € N sinceN is a normal subgroup. We first show
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that(a) is a group homomorphism, for @le H. We have

u@Ixyl = e(@xye@™*
= e(a)xe(@) te(a)ye(a) ™

= uw@Xxlu@lyl,

for all X, y € N. We next show that is a group homomorphism. For a@lb € H
and allx € N, we have

w@b)[x] = e(@ab)xe(@b)™?
= e(@e(b)xe(b)te(a)™?t
= p@[pbIX]] = w@unbd)x].

Sinceu(e)[x] = e(e)xe(e)~! = x for all x € N, the previous computation shows
thatu(a?) is the inverse ofi(a), verifying thatu(a) is an automorphism for all
aeH.

Usingu, we construcN x, H, and then defing : Nx, H — Gby¢(x,a) =
Xe(a), for all (x,a) € N x, H. Theng is one-to-one since ((x, a)) = eimplies
e€(a) € N, and sare(a) = e, whencea = e and thereforex = e.

Giveng € G, leta = n(g) andx = gen(g™?). Thenz(X) = n(Q)wen(g™t) =
7(g)m (g™l = e, and sox € N. Thusg¢ is onto, sincep((x,a)) = xe(@) =
genr (g Hen(9) = g.

Finally, we must show thap is a homomorphism. Foxi, a1), (X2, &) €
N x, H we have

P((X1, a) (X2, @) = ((Xre(@)X€(ar) ", adp))
= (xe(@)xae(@) He(aap)
= Xie(@)X€(ap)
= ¢ ((X1, )P ((X2, @) -

(3) implies (1): IfG = N x, (G/N), then the subgroupgx, e)} = N and
{(e, @)} = G/N have the required propertiesd

EXERCISES: SECTION 7.9

1. LetC; be the subgroupt1} of Z5, and letC; act onZ,, via the ordinary multipli-
cationu of congruence classes. Prove tAatx,, C; is isomorphic toDp.
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2. LetG be the subgroup of GI(Q) generated by the matrices

[Fo] e [a5]

Show thatG is a group of order 8 that is isomorphic By.
3. LetG be the subgroup of Gd(Z,) generated by the matrices

1 00 1 00 1 00
0 0 1], 11 0], 01 0|.
010 0 01 1 01

(a) Show thats is a group of order 8 that is isomorphic f.

(b) Define an actiom of Z, onZ, x Z5 by O(x, y) = (X, y) and XX, y) = (Y, X).
Show thatG is isomorphic taZ, x Z3) x,, Z>.

4. Show that the quaternion group cannot be written as a semidirect product of two
proper subgroups.

5. Prove thaf, is isomorphic to a semidirect produt, x Z,.
6. Show thatin > 2, thenZ, x Z5 is solvable but not nilpotent.

7. Letp be a prime, and leG be the subgroup of Gd(Z ) consisting of all matrices

of the form
1 00
a1l o0 .
b ¢ 1

Show thatG is isomorphic to a semidirect productsf x Z, andZy,.

7.10 Classification of Groups of Small Order

In this section we study finite groups of a manageable size. Our first goal is to
classify all groups of order less than 16 (at which point the classification becomes
more difficult). Of course, any group of prime order is cyclic, and simple abelian.

A group of order 4 is either cyclic, or else each nontrivial element has order 2,
which characterizes the Klein four-group. There is only one possible pattern for this
multiplication table, but there is no guarantee that the associative law holds, and so
it is necessary to give a model suchzgsx Z; orZ3.

7.10.1 Proposition. Any nonabelian group of ordd¥is isomorphic toSs.

Proof. This follows immediately from Proposition 7.4.50
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7.10.2 Proposition. Any nonabelian group of orde¥is isomorphic either t®4 or
to the quaternion groufs.

Proof. If G had an element of order 8, thé&would be cyclic, and hence abelian.
If each element o6s had order 1 or 2, then we would haxé = e for all X € G,
so(ab)? = a?b? for all a, b € G, andG would be abelian. Thué must contain at
least one element of order 4.

Leta be an element of order 4, and Mt= (a). SinceN has index 2, there are
precisely 2 cosets, given By andbN, for any elemenb ¢ N. Thus there exists
an elemenb such thatG = N UbN.

For the elements given in the previous part, eithfes= e or b> = a. To show
this, sinceN is normal, consideG/N. We havgbN)2 = N, and sd? € N. Since
b* = e(there are no elements of order 8) we h&v®? = e. In N the only elements
that satisfyx?> = e aree anda?, so eithe? = e or b? = a.

We next show thabab™! has order 4 and must be equalad. We have
(babH* = ba*b™! = bb! = e. If (hab1)? = e, thenba?b~! = e and so
a? = e, a contradiction to the choice af Henceo(bab™!) = 4. If bab™! = a,
thenab = baandwe hav& = N-(b) and saG would be abelian. Thusab! = a3.

We have shown thab contains elements, b such thag* = e, bab! = a3,
andb?® = eorb? = a2 If a* = e, b? = e, andbab™! = a3, thenG is isomorphic to
the dihedral grou,. If a* = e, b? = a2, andbab™! = a3, thenG is isomorphic
to the quaternion groufg. O

We can now determine (up to isomorphism) almost all groups of order less
than 16. A group of order 9 must be abelian by Corollary 7.2.9, and then its
structure is determined by Theorem 7.5.6. Proposition 7.4.5 determines the possible
groups of order 10 and 14. determines the possible groups of order 10 and 14.
Proposition 7.4.6 implies that a group of order 15 is cyclic. The remaining problem
is to classify the groups of order 12.

7.10.3 Proposition.Let G be a finite group.

(a) Let N be a normal subgroup d&. If there exists a subgroupl such that
HNN={e}land|H| =[G : N],thenG = N x H.

(b) Let G be a group with|G| = p"q™, for primesp, g. If G has a unique
Sylow p-subgroupP, and Q is any Sylowg-subgroup ofG, thenG = P x Q.
Furthermore, ifQ’ is any other Sylovg-subgroup, therP x Q' is isomorphic to
P x Q.

(c) LetG be a group with G| = p?q, for primesp, g. ThenG is isomorphic to
a semidirect product of its Sylow subgroups.
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Proof. (a) The natural inclusion followed by projection defines a homomorphism
H — G — G/N with kernelH N N. SinceH NN = {e} and|H| =[G : N], this
mapping is an isomorphism, and thus each left cos&fl has the formh N for
someh € H. For anyg € G we haveg € hN for someh € H, and soG = HN.

(b) The first statement follows from the part (a), sinGe = |G|/|P].

If Q' is any other Sylovg-subgroup, thel’ = gQg* for someg € G, since
Q' is conjugate taQ. Recall that the action aD on P is given bya = x = axa™?,
foralla € Qand allx € P. Define®d : Px Q — P x Q by &(x,a) =
(gxg i, gag?), forall x € P, a € Q. The mapping is well-defined sinde is
normal andQ’ = gQg . Forxy, X, € P anday, a; € Q we have

D((x1,81)P((X2.32)) = (9%0 " gaag (9% ' gag™)
= (0%0 'ga1g 'g%g (gag H ! gag Tt gy
= (%0 'gaug 'gx0 'ga; ‘gt gag tgag )
= (gxa%ea; gt gadpg )
= ®((xaxea; ', ad)) = (X1, 81)(Xz, @) -

Thus® is a homomorphism.

(c)If p > g, theng # 1 (mod p), so there must be only one Sylgwsubgroup,
which is therefore normal. 1p < g, thenp # 1 (mod q), and so the number of
Sylow g-subgroups must be 1 @?. In the first case, the Sylog-subgroup is
normal. If there arg? Sylow g-subgroups, then there must p&q — 1) distinct
elements of ordeq, so there can be at most one Sylpvsubgroup. O

7.10.4 Lemma.Let G, X be groups, letr, 8 : G — Aut(X), and letu, n be the
corresponding linear actions @& on X. ThenX x, G = X x,, G if there exists
¢ € Aut(G) such that8 = a¢.

Proof. Assume that € Aut(G) with 8 = a¢. For anya € G we haveg(a) =
a(¢(a)), and so for anyx € X we must havey(a, X) = u(¢p(@)), X). Define
®: Xx,G— Xx,Gbyd(x, a) = (X, ¢(@)forall x e Xanda € G. Since
¢ is an automorphism, it is clear th@tis one-to-one and onto. Faf, X, € X and
ai, a € G, we have

D((Xg, a1))P((X2, &) = (X1, ¢ (&) (X2, P (&)

(Xau(d (@), X2), ¢ (1) (a2))

(xan(@ag, X2), p(@a2)) = P((Xn(ae, X2), 1))
= O((X1, a1) (X2, @)) -

ThusX x,G=Xx,G. O
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7.10.5 Proposition. Any nonabelian group of order2 is isomorphic toA4, D, or
23 A Z4.

Proof. Let G be a group of order 12. The Sylow 2-subgroup must be isomorphic
toZ40rZ, x Z,, while the Sylow 3-subgroup must be isomorphi&tp Thus we
must find all possible semidirect products of the four combinations.

Case (i):Z4 x Z3
Since AulZ,) = Z; = Z,, there are no nontrivial homomorphisms fraiyg into
Aut(Z,4). Therefore this case reducesap x Zz = Z 1.

Case (ii):(Z2 x Z3) x Z3
Since AulZ, x Z,) = S andS; has a unique subgroup of order 3, there two possible
nontrivial homomorphisms froré; into S, but they define isomorphic groups by
Proposition 7.10.4. The groufp, has a unique Sylow 2-subgroup isomorphic to
Z> x Z,, and so we must hau@s x Z,) X Z3 = Aq.

Case (iii): Z3 ¥ (Z2 x Z3)
Since AulZ3) = Z3 = Z5, there are 3 nontrivial homomorphisms frafa x Z,
into Aut(Z3), but they define isomorphic semidirect products, by Proposition 7.10.4.
It can be shown thalz x (Z> x Z5) = De.

Case (iv):Z3 X Z4
There is only one nontrivial homomorphism frafy into Aut(Z3), in which (1)

corresponds to multiplication by 2. It is left as an exercise to show that this group
is isomorphic to the one called™ by Hungerford. O

The following table summarizes the information that we have gathered.

Order Groups Order Groups
2 Zz 9 Zg, Z3 X Z3
3 Zj 10 Zig, Ds
4 Z4, Zz X Zg 11 le
5 Z5 12 212, ZG X ZZ
6 Ze S A4, De, Z3 X Z4
7 Zy 13 Zji3
8 Zg, Z4 X Zz, Zz X Zz X Zz 14 214, D7
D4, Qs 15 Zjs

We now turn our attention to another question. The list of simple nonabelian
groups that we know contains,, for n > 4, (by Theorem 7.7.4), and P&(F),
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whereF is a finite field with|F| > 3 (by Theorem 7.7.9). The smallest of these
groups areAs and P SLy(Zs), each having 60 elements. Exercise 7.7.9 shows that
in fact they are isomorphic.

It is not difficult to show thatAs is the smallest nonabelian simple groupGlf
is a group of orden, thenG is abelian ifn is prime, and has a nontrivial center
(which is normal) ifn is a prime power. Ih = p?q, wherep, q are distinct primes,
then we have shown th& is a semidirect product of its Sylow subgroups, and so
G is not simple. These results cover all numbers less than 60, with the exception of
30, 36, 40, 42, 48, 54, and 56.

Example 7.4.2 shows that a group of order 30 cannot be simple. It is easy to
check the following: in a group of order 40, the Sylow 5-subgroup is normal; in
a group of order 42, the Sylow 7-subgroup is normal; in a group of order 54, the
Sylow 3-subgroup is normal. The case-= 56 is left as an easy exercise.

We will use the following proposition to show that no group of order 36 or 48
can be simple, which finishes the argument.

7.10.6 Proposition. Let G be a finite simple group of order, and letH be any
proper, nontrivial subgroup ob.

(@) If k =[G : H], thenn is a divisor ofk!.
(b) If H hasm conjugates, then is a divisor ofm!.

Proof. (a) Let S be the set of left cosets dfi, and letG act onS by defining
axXxH = (ax)H, for all a,x € G. For any left cosekH and anya,b € G,
we havea(bxH) = (ab)xH. Sincee(xH) = (exYH = xH, this does define a
group action. The corresponding homomorphismG — Sym(S) is nontrivial,
S0¢ must be one-to-one sinégis simple. Therefore Sy%) contains a subgroup
isomorphic toG, and san is a divisor ofk! = | Sym(S)|.

(b) Let Sbe the set of subgroups conjugatetoand define an action @@ on
Sas in Example 7.3.7, by lettilgx K = aKa™!, forallae GandallK € S. In
this case| Sym(S)| = m!, and the proof follows as in part (a).0

7.10.7 Proposition. The alternating groupAs is the smallest nonabelian simple
group.

Proof. Assuming the result in Exercise 1 the proof can now be completed by
disposing of the cases= 36 andn = 48. For a group of order 36, there must be
either 1 or 4 Sylow 3-subgroups. Since 36 is not a divisor!pthe group cannot

be simple. For a group of order 48, there must be either 1 or 3 Sylow 2-subgroups.
Since 48 is not a divisor of!3the group cannot be simpled
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EXERCISES: SECTION 7.10

. Complete the proof thaks is the smallest nonabelian simple group by showing that

there is no simple group of order 56.
Prove that the automorphism groupZaf x Z5 is isomorphic t0Ss.

Show that the nonabelian grodp x (Z» x Z») is isomorphic to the dihedral group
Ds.

. Show that the nonabelian grodp x Z4 is generated by elemerdasof order 6, and

b of order 4, subject to the relatiohé = a% andba = a~1b.
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