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TO THE STUDENT v

TO THE STUDENT

The text contains a little over 1; 000 exercises. In “Selected Solutions for Stu-
dents” we have written up complete solutions for a bit more than 10% of them. In
many cases we chose these problems to solve because they play a significant role
in the general development. Some of the longer problems could probably serve as
a “project”, taking you along a new pathway. We hope that having these solutions
will encourage you to work on some problems that haven’t been assigned.

The ideal way to use this set of solutions is to work on a solved exercise, and
if you get stuck, uncover just enough of the solution to get started again. We can’t
emphasize enough that the aim of working on an exercise isn’t just to solve the
problem. The process is vitally important: it will probably involve a search for
theorems in the text that might serve as tools; it may involve making up some ex-
amples of your own so that you really understand the question. Hopefully, everthing
leading up to a solution will add to the material you have really mastered.

So, good luck, and only peek at the solutions as a last resort!

John Beachy
Bill Blair



1 INTEGERS

1.1. Divisors

17. Show that the positive integer k is the difference of two odd squares if and only
if k is divisible by 8.

Solution: If k D n2 �m2, wherem and n are odd integers, then as in Example 1.1.7
we can write k D .2r C 1C 2sC 1/.2r C 1� 2s � 1/ D .2/.r C sC 1/.2/.r � s/
for some r; s 2 Z. Now we need to take two cases. First, if r � s is even, then
r � s has 2 as a factor, and so k has 8 as a factor. Second, if r � s is odd, then
r C s D .r � s/C .2s/ is the sum of an odd integer and an even integer, so it must
also be odd. That means that r C sC 1 is even, so it has 2 as a factor, and therefore
k again has 8 as a factor. Showing that we can factor 8 out ofm2 �n2 gives exactly
what we were to prove: if m and n are odd, then m2 � n2 is divisible by 8.

Conversely, if 8 j k, then k D 8t for some t 2 Z, and so .2tC1/2�.2t�1/2 D
4t2 C 4t C 1 � 4t2 C 4t � 1 D 8t D k.

18. Give a detailed proof of the statement in the text that if a and b are integers,
then b ja if and only if aZ � bZ.

Solution: Suppose that b ja. Then there exists r 2 Z such that a D br . If x 2 aZ,
then x D at for some t 2 Z. Hence x D at D .br/t D b.rt/ and so x 2 bZ.

Conversely, suppose that aZ � bZ. Then since a D a �1 2 aZ we have a 2 bZ.
Thus a D bt for some t 2 Z and so b ja.

1.2. Primes

18. Let a; b be nonzero integers with .a; b/ D 1. Compute .aC b; a � b/.
Solution: Let d D gcd.aCb; a�b/, and divide aCb by a�b to get aCb D
1.a�b/ C 2b, which shows that d D gcd.a�b; 2b/. Since gcd.a; b/ D 1, we
can write ma C nb D 1 for some m; n 2 Z, and then m.a�b/ C .mCn/b D 1.
Because d j .a�b/, it follows that gcd.d; b/ D 1. But then d j 2b implies, by
Proposition 1.2.3 (b), that d j 2.
Case 1. If a�b is even, then gcd.a�b; 2b/ � 2, so d D 2.
Case 2: If a�b is odd, then gcd.a�b; 2/ D 1. The equationm.a�b/C.mCn/b D 1
shows that gcd.a�b; b/ D 1, so Proposition 1.2.3 (d) implies that gcd.a�b; 2b/ D 1,
and therefore d D 1.

1
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22. Show that if a; b are positive integers such that .a; b/ D 1 and ab is a square,
then a and b are also squares.

Solution: Let a D p
˛1

1 p
˛2

2 � � �p˛t

t and b D q
ˇ1

1 q
ˇ2

2 � � � qˇs
s . Since gcd.a; b/ D 1,

no pi is equal to a qj . Now ab D p
˛1

1 p
˛2

2 � � �p˛t

t q
ˇ1

1 � � � qˇs
s and the prime powers

can be reordered to give the factorization of ab into distinct prime powers. Since
ab is a square, each ˛i and ǰ is even, and hence a and b are squares.

30. If a; b; c are positive integers such that a2 C b2 D c2, then .a; b; c/ is called a
Pythagorean triple.

(a) Show that a and b cannot both be odd.

Solution: If a D 2nC 1 and b D 2mC 1 are odd, then a2 C b2 D
.2n C 1/2 C .2m C 1/2 D 4n2 C 4n C 1 C 4m2 C 4m C 1 D 4t C 2 for some
t 2 Z. If c is even, then c D 2k for some k and c2 D 4k2 ¤ 4t C 2. If c is odd,
then c D 2s C 1 for some s and c2 D 4s2 C 4s C 1 ¤ 4t C 2. Thus one of a or b
must be even.

(b) Assume that a is even. Show that there exist relatively prime integers m and n
such that a D 2mn, b D m2 � n2, and c D m2 C n2.

Solution: Since a is even we can write a D 2u for some u 2 Z. Note that a2 D
c2 �b2 D .c�b/.cCb/. Since b and c must both be odd, 2j.c�b/ and 2j.cCb/,
and it also follows from Exercise 18 that gcd

�
c�b

2
; cCb

2

�
D 1. Both c�b

2
and

cCb
2

are squares (see Exercise 22), say cCb
2

D m2 and c�b
2

D n2. Since u2 D�
c�b

2

� �
cCb

2

�
, we have u D mn. Therefore a D 2mn, b D cCb

2
� c�b

2
D m2�n2,

and c D cCb
2

C c�b
2

D m2 C n2. Since the greatest common divisor of a, b, and c
is 1, the same is true for m and n.

1.3. Congruences

26. Prove that the fourth power of an integer can only have 0, 1, 5, or 6 as its units
digit.

Solution: Since the question deals with the units digit of n4, it is asking us to find
n4 .mod 10/. All we need to do is to compute the fourth power of each congruence
class modulo 10: 04 D 0, .˙1/4 D 1, .˙2/4 D 16 � 6 .mod 10/, .˙3/4 D 81 �
1 .mod 10/, .˙4/4 � 62 � 6 .mod 10/, and 54 � 52 � 5 .mod 10/. This shows
that the only possible units digits for n4 are 0, 1, 5, and 6.

30. (a) Show that if m 2 Z, m � 0, such that 2m C 1 is prime, then m D 0 or m is
a power of 2.
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Solution: If m D 0, then 2m C 1 D 1C 1 D 2 is prime.
Suppose that m > 0 and m D rs, where r is the largest odd divisor of m. Then

2m C 1 D 2rs C 1 D .2s C 1/.2s.r�1/ � 2s.r�2/ C : : : � 2s C 1/ :

Since 2mC1 is prime and 2sC1 > 1, we must have 2s.r�1/�2s.r�2/C: : :�2sC1 D
1, and thus r D 1. Therefore m D 2n for some n 2 Z, n � 0, since r is the largest
odd divisor of m.

(b) Show that F5 is divisible by 641, providing a counterexample to Fermat’s belief
that all Fermat numbers are prime.

Solution: We have 641 D 640C 1 D 5 � 27 C 1 and 641 D 625C 16 D 54 C 24, so
5�27 � �1 .mod 641/ and 24 � �54 .mod 641/. Then F5 D 225 C1 D 232C1 D
24228 C1 � �54228 C1 � �.5 �27/4 C1 � �.�1/4 C1 � 0 .mod 641/, showing
that F5 is divisible by 641.

(c) Show that Fn � 7 .mod 10/ for n � 2.

Solution: To give a proof by induction, we first have F2 D 222 C 1 D 17 �
7 .mod 10/. Suppose thatFn D 22nC1 � 7 .mod 10/. ThenFnC1 D 22nC1C1 D�
22n�2 C 1. Since 22n D Fn � 1 � 6 .mod 10/, we have

�
22n�2 � 62 �

6 .mod 10/, and so FnC1 D �
22n�2 C 1 � 6C 1 � 7 .mod 10/.

(d) Show that
Q

0�k<m Fk D Fm � 2.

Solution: We have F0 D F1 �2 since 3 D 5�2, so the result is true form D 1. As-
sume that

Q
0�k<m Fk D Fm � 2. Then

Q
0�k<mC1 Fk D �Q

0�k<m Fk

�
Fm D

.Fm � 2/ Fm D �
22m � 1� �

22m C 1
� D 22mC1 � 1 D FmC1 � 2 and the result

follows by induction.

(e) Show that .Fn; Fm/ D 1 if n ¤ m.

Solution: Without loss of generality, suppose that n < m. If d j Fn and d j Fm,
then d j Q

0�k<m Fk and so d j .Fm � 2/. But if d j Fm and d j .Fm � 2/, then
d j 2, so d D 2 or d D 1. Since Fn D 22n C 1 is odd, we have d D 1, and
therefore .Fn; Fm/ D 1.

Alternate proof : Suppose that n < m and p is a common prime divisor of 22n C 1

and 22m C1. Then 22n � �1 .mod p/ and 22m � �1 .mod p/. But 22m

is an even
power of 22n

, since n < m, which implies that 22m � 1 .mod p/, a contradiction.

(f) Use part (e) to give a new proof that there are infinitely many prime numbers.

Solution: Each Fn is either prime or divisible by a prime. Since .Fn; Fm/ D 1 for
n ¤ m, each number Fn has a prime divisor that does not divide any other Fn.
Since there are infinitely many numbers of the form Fn, there are infinitely many
prime numbers.
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1.4. Integers Modulo n

14. Show that Z�
17 is cyclic.

Solution: We begin by trying Œ2�. We have Œ2�2 D Œ4�, Œ2�3 D Œ8�, and Œ2�4 D
Œ16� D Œ�1�. Exercise 10 shows that the multiplicative order of an element has to
be a divisor of '.17/ D 16, so the next possibility to check is 8. Since Œ2�8 D
Œ�1�2 D Œ1�, it follows that Œ2� has multiplicative order 8.

We next try Œ3�. We have Œ3�2 D Œ9�, Œ3�4 D Œ81� D Œ�4�, and Œ3�8 D Œ16� D
Œ�1�. The only divisor of 16 that is left to try is 16 itself, so Œ3� does in fact have
multiplicative order 16, and we are done.

19. Using the formula for '.n/, compute '.27/, '.81/, and '.p˛/, where p is a
prime number. Give a proof that the formula for '.n/ is valid when n D p˛, where
p is a prime number.

Solution: '.27/ D 27.1 � 1
3
/ D 18 '.81/ D 81.1 � 1

3
/ D 54

In general, we have '.p˛/ D p˛.1 � 1
p
/ D p˛�1.p � 1/. We prove this by

observing that there are p˛�1 multiples of p between 1 and p˛, inclusive. Thus
there are p˛ � p˛�1 D p˛�1.p � 1/ numbers that are relatively prime to p in the
interval from 1 to p˛.

31. Prove that if m; n are positive integers with .m; n/ D 1, then '.mn/ D
'.m/'.n/.

Solution: By the Chinese remainder theorem the system x � a .mod m/, x �
b .mod n/ has a unique solution s modulo mn. Define f W Zm � Zn ! Zmn

by f .Œa�m; Œb�n/ D Œs�mn. If gcd.a;m/ D 1 and gcd.b; n/ D 1, then since s �
a .mod m/ and s � b .mod n/ we have gcd.s;m/ D 1 and gcd.s; n/ D 1. By
Proposition 1.2.3 we have gcd.s;mn/ D 1. Conversely, if gcd.s;mn/ D 1 then
gcd.s;m/ D 1 and gcd.s; n/ D 1 and since a � s .mod m/ and b � s .mod n/
we have gcd.a;m/ D 1 and gcd.b; n/ D 1. Thus Œa� and Œb� are units in Zm and
Zn respectively if and only if Œs� is a unit in Zmn. Since Zm � Zn has '.m/ � '.n/
units while Zmn has '.mn/ units, we have '.m/'.n/ D '.mn/.

32. Use Exercise 19 and Exercise 31 to prove Proposition 1.4.8.

Solution: Let n D p
˛1

1 p
˛2

2 � � �p˛t

t be a factorization of n into distinct prime powers.
By Exercise 31, '.n/ D Qt

j D1 '.p
˛i

i / D Qt
j D1 p

˛i �1
i .pi � 1/. The last equality

follows from Exercise 19.
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2 FUNCTIONS

2.1. Functions

1. In each of the following parts, determine whether the given function is one-to-
one and whether it is onto.

(d) f W RC ! R; f .x/ D ln x

Solution: If ln x1 D ln x2 for x1; x2 2 RC, then x1 D eln.x1/ D eln.x2/ D x2,
showing that f is one-to-one. Given y 2 R, we have y D ln.ey/, and so f is also
onto. Note that we have really used the fact that ex is an inverse function for ln x.
(See the solution to Exercise 3 (d).)

Alternate solution: Calculus textbooks often give the following conditions for func-
tions whose domain and codomain are subsets of R. A function is one-to-one if and
only if any horizontal line cuts the graph of the function in at most one point. A
function is onto if and only if any horizontal line through the codomain (on the
y-axis) cuts the graph of the function in at least one point. The graph of y D ln x
meets these criteria, so ln x is one-to-one and onto.

3. For each one-to-one and onto function in Exercise 1, find the inverse of the
function.

(d) f W RC ! R; f .x/ D ln x

Solution: Define g W R ! RC by g.y/ D ey , for all y 2 R. Then g ı f .x/ D
g.f .x// D eln x D x for all x 2 RC, and f ı g.x/ D f .g.x// D ln.ex/ D x for
all x 2 R, This shows that g is the inverse function of f .
Note: Given that ln x has an inverse, we could have used Proposition 2.1.7 to solve
Exercise 1 (d).

11. Let k and n be positive integers. For a fixed m 2 Z, define the formula
f W Zn ! Zk by f .Œx�n/ D Œmx�k , for x 2 Z. Show that f defines a function if
and only if kjmn.

Solution: First suppose that kjmn. If Œx1�n D Œx2�n then x1 � x2 .mod n/ and so
nj.x1 �x2/ and thusmnj.mx1 �mx2/. Since kjmn, we then have kj.mx1 �mx2/,
and so Œmx1�k D Œmx2�k . Hence f is well-defined.

Conversely, suppose that f is well-defined. Then since Œ0�n D Œn�n we have
Œmn�k D f .Œn�n/ D f .Œ0�n/ D Œm � 0�k D Œ0�k . Hence mn � 0 .mod k/ and
kjmn.

17. Let f W A ! B be a function. Prove that f is onto if and only if hıf D k ıf
implies h D k, for every set C and all choices of functions h W B ! C and
k W B ! C .
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Solution: Suppose that f is onto. Let b 2 B . Then there exists a 2 A with
f .a/ D b. If h ı f D k ı f then h.b/ D h.f .a// D .h ı f /.a/ D .k ı f /.a/ D
k.f .a// D k.b/. Since h.b/ D k.b/ for all b 2 B , we have h D k.

Suppose that f is not onto. Let b0 2 B such that b0 62 f .A/. Let C D f1; 2g
and define h W B ! C by h.b/ D 1 for all b 2 B; define k W B ! C by k.b/ D 1
for b 2 B , b ¤ b0 and k.b0/ D 2. Then h ¤ k, since h.b0/ D 1 ¤ 2 D k.b0/.
On the other hand h ı f .a/ D h.f .a// D 1 and k ı f .a/ D k.f .a// D 1
since f .a/ ¤ b0. Since h ı f and k ı f have the same domain and codomain,
h ı f D k ı f .

2.2. Equivalence relations

11. Let W be a subspace of a vector space V over R, (that is, the scalars are
assumed to be real numbers). We say that two vectors u; v 2 V are congruent
modulo W if u � v 2 W , written u � v .mod W /.

(d) Let V D R2, and let W D f.x; 0/ j x 2 Rg. Describe the equivalence class
Œ.x; y/�W geometrically. (This is only the first part of the question.)

Solution: Since .x1; y1/ � .x2; y2/ .mod W / if and only if .x1; y1/ � .x2; y2/ 2
W if and only if .x1 � x2; y1 � y2/ 2 W if and only if y1 D y2, the equivalence
class Œ.x; y/� D f.t; y/ j t 2 Rg is the horizontal line through y.

12. Let T D f.x; y; z/ 2 R3 j .x; y; z/ ¤ .0; 0; 0/g. Define � on T by
.x1; y1; z1/ � .x2; y2; z2/ if there exists a nonzero real number � such that x1 D
�x2, y1 D �y2, and z1 D �z2.

(a) Show that � is an equivalence relation on T .

Solution: (i) Since x D 1 � x, y D 1 � y, and z D 1 � z we have .x; y; z/ � .x; y; z/
for any .x; y; z/ 2 T . Hence � is reflexive.

(ii) Suppose that .x1; y1; z1/ � .x2; y2; z2/. Then there exists 0 ¤ � 2 R such
that x1 D �x2, y1 D �y2, and z1 D �z2. Now ��1 2 R and ��1 ¤ 0. Since
x2 D ��1x1, y2 D ��1y1, and z2 D ��1z1, we have .x2; y2; z2/ � .x1; y1; z1/.
Hence � is symmetric.

(iii) Suppose that .x1; y1; z1/ � .x2; y2; z2/ and .x2; y2; z2/ � .x3; y3; z3/.
Then there exist 0 ¤ � 2 R and 0 ¤ � 2 R such that x1 D �x2, y1 D �y2, and
z1 D �z2 and also x2 D �x3, y2 D �y3, and z2 D �z3. Hence x1 D .��/x3,
y1 D .��/y3, and z1 D .��/z3, while 0 ¤ �� 2 R. Thus .x1; y1; z1/ �
.x3; y3; z3/ and � is transitive.

Since � is reflexive, symmetric, and transitive it follows that � is an equiva-
lence relation on T .

(b) Give a geometric description of the equivalence class of .x; y; z/.
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Solution: The class Œx; y; z� D f.�x;�y;�z/ j � 2 R and � ¤ 0g is a line through
.0; 0; 0/ and .x; y; z/ with the point .0; 0; 0/ deleted.

(c) Let .a; b; c/ 2 T , and suppose that .x1; y1; z1/ � .x2; y2; z2/. Show that if
ax1 C by1 C cz1 D 0, then ax2 C by2 C cz2 D 0. Conclude that

L D fŒx; y; z� 2 P2 j ax C by C cz D 0g
is a well-defined subset of P2.

Solution: Suppose that .x1; y1; z1/ � .x2; y2; z2/. Then there exists 0 ¤ � 2 R
such that x1 D �x2, y1 D �y2, and z1 D �z2. Now 0 D ax1 C by1 C cz1 D
�.ax2 C by2 C cz2/. Since � ¤ 0, we have ax2 C by2 C cz2 D 0. Hence
L D fŒx; y; z� j ax C by C cz D 0g is well-defined.

(d) Show that the triples .a1; b1; c1/ 2 T and .a2; b2; c2/ 2 T determine the same
line if and only if .a1; b1; c1/ � .a2; b2; c2/.

Solution: Let Li be the line determined by .ai ; bi ; ci /. Thus Li D fŒx; y; z� j
aix C biy C ciz D 0g for i D 1; 2. Suppose that .a1; b1; c1/ � .a2; b2; c2/. Then
there exists 0 ¤ � 2 R such that a1 D �a2, b1 D �b2, and c1 D �c2. Thus, if
.x; y; z/ 2 T and a1xC b1yC c1z D 0, then .�a1/xC .�b1/yC .�c1/z D 0 and
so a2x C b2y C c2z D 0. Hence L1 � L2. Since a2 D ��1a1, b2 D ��1b1, and
c2 D ��1c1, we also have L2 � L1. Hence if .a1; b1; c1/ � .a2; b2; c2/, then we
have L1 D L2.

Conversely, suppose that L1 D L2. Hence for .x; y; z/ 2 T we have (1)
a1x C b1y C c1z D 0 if and only if (2) a2x C b2y C c2z D 0. One of a2, b2,
c2 is nonzero; without loss of generality suppose that a2 ¤ 0. Then a1 ¤ 0, for
otherwise x D 1, y D 0, z D 0 satisfies (1) but not (2). Let � D a1

a2
. Then

0 ¤ � 2 R. Since x D c1, y D 0, z D �a1 satisfies (1), it also satisfies (2) and
so a2c1 D c2a1, and since x D b1, y D �a1, z D 0 satisfies (1), it also satisfies
(2) and so a2b1 D b2a1. Thus c1 D a1

a2
c2 D �c2 and b1 D a1

a2
b2 D �b2. Hence

a1 D �a2, b1 D �b2, and c1 D �c2, and so .a1; b1; c1/ � .a2; b2; c2/.

(e) Given two distinct points of P2, show that there exists exactly one line that
contains both points.

Solution: Let Œx1; y1; z1� ¤ Œx2; y2; z2�, and treat a; b; c as unknowns. Then the

system
�
ax1 C by1 C cz1 D 0

ax2 C by2 C cz2 D 0
has a nontrivial solution .a; b; c/ since it consists

of 2 homogeneous equations in 3 unknowns. Hence there exists at least one line L
determined by .a; b; c/ which both points satisfy. To show that the line is unique
we use the “Rank-Nullity” theorem of linear algebra. Suppose that both points
Œx1; y1; z1� and Œx2; y2; z2� satisfy the lines L1 D fŒx; y; z� j a1x C b1y C c1z D
0g and L2 D fŒx; y; z� j a2x C b2y C c2z D 0g. Define Ti W R3 ! R by
Ti .x; y; z/ D aix C biy C ciz for i D 1; 2. Clearly Ti is a linear transformation
and since at least one of ai , bi , ci is nonzero the rank of Ti is 1 and the nullity
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of Ti is 2. Since both .x1; y1; z1/ and .x2; y2; z2/ belong to the nullspace of Ti

and since they are linearly independent, they form a basis for the nullspace of both
T1 and T2. Consider any vector .x0; y0; z0/ which is not in the nullspace of T1

(or T2/. Then T1.x0; y0; z0/ D �T2.x0; y0; z0/ for some 0 ¤ � 2 R. Consider
T1 � �T2. The nullspace of T1 � �T2 is spanned by the three linearly independent
vectors .x0; y0; z0/, .x1; y1; z1/, and .x2; y2; z2/. Thus the nullspace of T1 � �T2

is all of R3 and so T1 D �T2. Applying T1 and T2 to .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/
we see that a1 D �a2, b1 D �b2, and c1 D �c2. Thus .a1; b1; c1/ � .a2; b2; c2/
and by part (d) they determine the same line.

(f) Given two distinct lines, show that there exists exactly one point that belongs to
both lines.

Solution: This is a similar argument to the one in (e).

(g) Show that the function f W R2 ! P2 defined by f .x; y/ D Œx; y; 1� is a
one-to-one function.

Solution: Suppose that f .x1; y1/ D f .x2; y2/. Then Œx1; y1; 1� D Œx2; y2; 1�.
Thus x1 D �x2, y1 D �y2, and 1 D � � 1. Hence � D 1 and .x1; y1/ D .x2; y2/.
Therefore f is one-to-one as required.

(h) Show that the embedding of part (g) takes lines to “lines.”

Solution: A line in the affine plane has the form ax C by C c D 0 where not both
a and b are zero. Thus .x; y/ belongs to ax C by C c D 0 if and only if Œx; y; 1�
belongs to L D fŒx; y; z� j ax C by C cz D 0g.

(i) If two lines intersect in R2, show that the image of their intersection is the
intersection of their images (under the embedding defined in part (g)).

Solution: Suppose that a1x C b1y C c1 D 0 intersects a2x C b2y C c2 D 0 at the
point .x0; y0/. If Li D fŒx; y; z� j aix C biy C ciz D 0g for i D 1; 2, then we
have that Œx0; y0; 1� belongs to the intersection of L1 and L2.

(j) If two lines are parallel in R2, what happens to their images under the embedding
into P2?

Solution: If a1xC b1yC c1 D 0 is parallel to a2xC b2yC c2 D 0, then either (1)
b1 D b2 D 0 or (2) a1

b1
D a2

b2
. Suppose that b1 D b2 D 0. Then the point Œ0; 1; 0�

belongs to both L1 and L2 where as before Li D fŒx; y; z� j aixCbiyCciz D 0g
for i D 1; 2. On the other hand, if a1

b1
D a2

b2
, then Œ�b1; a1; 0� D Œ�b2; a2; 0�

belongs to L1 and L2.
From (i) and (j) we see that in P2 all lines intersect.

2.3. Permutations

15. Let � 2 Sn be the cycle .1; 2; : : : ; k/ of length k, where k � n.
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(a) Prove that if � 2 Sn, then ����1 D .�.1/; �.2/; : : : ; �.k//. Thus ����1 is a
cycle of length k.

Solution: Assume that � 2 Sn, where k � n. If j 2 f�.1/; �.2/; : : : ; �.k�1/g then
say j D �.i/. Now ����1.j / D ����1.�.i// D ��.i/ D �.iC1/. If j D �.k/,
then ����1.j / D ����1.�.k// D ��.k/ D �.1/. If j 62 f�.1/; �.2/; : : : ; �.k/g,
then ��1.j / 62 f1; 2; : : : ; kg and so ����1.j / D �.��1.j // D j . Hence
����1 D .�.1/; �.2/; : : : ; �.k//.

(b) Let � be any cycle of length k. Prove that there exists a permutation � 2 Sn

such that ����1 D �.

Solution: Assume that �; � 2 Sn, where k � n, and let � D .a1; a2; : : : ; ak/. For
the numbers i , with i � n, that do not appear in �, we can choose an ordering

akC1; : : : ; an. Then we can define � D
�
1 2 : : : k k C 1 : : : n

a1 a2 : : : ak akC1 : : : an

�

and ����1 D .�.1/; : : : ; �.k// D .a1; a2; : : : ; ak/ D �.

18. View S3 as a subset of S5, in the obvious way. For �; � 2 S5, define � � � if
���1 2 S3.

(d) Determine the total number of equivalence classes.

Solution: The equivalence class of � is f� 2 S5 j � � �g, which is equal to
f� 2 S5 j ���1 D � for some � 2 S3g D f� 2 S5 j � D �� for some � 2 S3g.
Thus we can find the equivalence class of � 2 S5 by finding all products of the form
��, for � 2 S3. If �1� D �2� for some �1; �2, then multiplying on the right by ��1

shows that �1 D �2. Thus the 6 permutations in S3 will yield 6 distinct products of
the form �� in the equivalence class of �. It follows that every equivalence class
has 6members. Since S5 has 120 elements, the total number of equivalence classes
is 120

6
D 20.
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3 GROUPS

3.1. Definition of a Group
4. Prove that multiplication of 2 � 2 matrices satisfies the associative law.

Solution: Let A D
�
a11 a12

a21 a22

�
, B D

�
b11 b12

b21 b22

�
, and C D

�
c11 c12

c21 c22

�
.

Then

A.BC/ D
�
a11 a12

a21 a22

� ��
b11 b12

b21 b22

� �
c11 c12

c21 c22

��

D
�
a11 a12

a21 a22

� �
b11c11 C b12c21 b11c12 C b12c22

b21c11 C b22c21 b21c12 C b22c22

�
D

�
a11b11c11+a11b12c21+a12b21c11+a12b22c21 a11b11c12+a11b12c22+a12b21c12+a12b22c22

a21b11c11+a21b12c21+a22b21c11+a22b22c21 a21b11c12+a21b12c22+a22b21c12+a22b22c22

�

D
�
a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C b22b22

� �
c11 c12

c21 c22

�

D
��

a11 a12

a21 a22

� �
b11 b12

b21 b22

�� �
c11 c12

c21 c22

�

D .AB/C :

11. Show that the set of all 2�2matrices over R of the form
�
m b

0 1

�
withm ¤ 0

forms a group under matrix multiplication.

Solution: (i) The product
�
m b

0 1

� �
n c

0 1

�
D

�
mn mc C b

0 1

�
of two ele-

ments of the given form has the proper form since mn ¤ 0. Thus matrix multipli-
cation is a binary operation on the given set.

(ii) Matrix multiplication is associative by Exercise 4.

(iii) The matrix
�
1 0

0 1

�
has the proper form and it is the identity element

under matrix multiplication.

(iv) Given
�
m b

0 1

�
, consider

�
1=m �b=m
0 1

�
. This matrix has the proper

form and is the required inverse since
�
m b

0 1

� �
1=m �b=m
0 1

�
D

�
1 0

0 1

�

and
�
1=m �b=m
0 1

� �
m b

0 1

�
D

�
1 0

0 1

�
.
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13. Define � on R by a � b D a C b � 1, for all a; b 2 R. Show that .R;�/ is an
abelian group.

Solution: Since a � b D b � a for all a; b 2 R, the operation is commutative, and
this eliminates some calculations.

(i) The operation � W R�R ! R is the composite of ordinary addition followed
by the function f .x/ D x � 1, so it is a well-defined function.

(ii) The operation is associative since
.a � b/ � c D .aC b � 1/ � c D .aC b � 1/C c � 1 D aC b C c � 2 and
a � .b � c/ D a � .b C c � 1/ D aC .b C c � 1/ � 1 D aC b C c � 2.

(iii) Since 1 � b D 1C b � 1 D b for all b 2 R, it follows that 1 is an identity.
(We also have b � 1 D b since the operation is commutative.)

(iv) The inverse of a is 2� a, since a � .2� a/ D aC .2� a/� 1 D 1. (Again,
since the operation is commutative we do not need to check that .2� 1/ � a D 1.)

19. Let G be a group. For a; b 2 G, prove that .ab/n D anbn for all n 2 Z if and
only if ab D ba.

Solution: If .ab/n D anbn for all n 2 Z, then in particular .ab/2 D a2b2, so
ab D ba by Example 3.1.2.

Conversely, suppose that a; b 2 G with ab D ba.
We will first show by induction that ban D anb for all positive integers n.

The result holds for n D 1 by hypothesis. Now suppose that bak D akb. Then
bakC1 D baka D akba D akab D akC1b, so the general result holds.

We next show that .ab/n D anbn for all positive n. The result holds for n D 1

by hypothesis. Now suppose that .ab/k D akbk . Then .ab/kC1 D ab.ab/k D
abakbk D aakbbk D akC1bkC1.

We also have .ab/0 D e D a0b0.
Since ab D ba, we have .ab/�1 D .ba/�1, and thus b�1a�1 D a�1b�1.

Finally, if n < 0 then say n D �m, where m > 0. Hence .ab/n D .ab/�m D
..ab/�1/m D .b�1a�1/m D .a�1b�1/m D .a�1/m.b�1/m D anbn as required.

20. Let G be a group. Prove that aman D amCn for all a 2 G and all m; n 2 Z.

Solution: We let n 2 Z and prove that aman D amCn for all a and all positive
integersm by induction. Ifm D 1, then a1an D a �an D anC1. If aman D amCn,
then amC1an D .aam/an D a.aman/ D a.amCn/ D amCnC1 D a.mC1/Cn.

For m D 0 we have a0an D e � an D an D a0Cn.
If m < 0, say m D �r , then aman D a�ran D .a�1/r.a�1/�n D

.a�1/rC.�n/ D .a�1/�mC.�n/ D ..a�1/�1/mCn D amCn as required.

21. Let G be a group. Prove that .am/n D amn for all a 2 G and all m; n 2 Z.

Solution: We let n 2 Z and prove that .am/n D amn for all a and all positive
integers m by induction. If m D 1, then .a1/n D an D a1�n. If .am/n D amn,
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then .amC1/n D .am � a/n D .am/nan (by the proof in Exercise 19, since am and
a commute) and so .amC1/n D amn � an D amnCn D a.mC1/n.

For m D 0 we have .am/n D .a0/n D en D e D a0 D a0�n.
If m < 0, then m D �r for some r > 0 and so .am/n D .a�r/n D

..a�1/r/n D .a�1/rn D a�rn D amn, as required.

26. Show that if G is a finite group with an even number of elements, then there
must exist an element a 2 G with a ¤ e such that a2 D e.

Solution: If G is any group and x 2 G with x2 ¤ e, then x ¤ x�1 and .x�1/2 D
.x2/�1 ¤ e. Thus G has an even number of elements x with x2 ¤ e. If G has an
even number of elements, this leaves an even number of elements x with x2 D e.
There is at least one such element, the identity e. Thus there must be at least one
more element a, with a ¤ e and a2 D e.

3.2. Subgroups

9. Let G D GL3.R/. Show that H D
8<
:

2
4 1 0 0

a 1 0

b c 1

3
5

9=
; is a subgroup of G.

Solution: We will use Proposition 3.2.2. If

2
4 1 0 0

a1 1 0

b1 c1 1

3
5,

2
4 1 0 0

a2 1 0

b2 c2 1

3
5 2 H ,

then

2
4 1 0 0

a1 1 0

b1 c1 1

3
5

2
4 1 0 0

a2 1 0

b2 c2 1

3
5 D

2
4 1 0 0

a1 C a2 1 0

b1 C c1a2 C b2 c1 C c2 1

3
5 is in

H . The identity matrix

2
4 1 0 0

0 1 0

0 0 1

3
5 belongs toH . If

2
4 1 0 0

a 1 0

b c 1

3
5 is inH , then

2
4 1 0 0

a 1 0

b c 1

3
5

�1

D
2
4 1 0 0

�a 1 0

�b C ca �c 1

3
5 is in H . Therefore H is a subgroup

of G.

Note: The group H is known as the continuous Heisenberg group.

17. Prove that the intersection of any collection of subgroups of a group is again a
subgroup.

Solution: We will use Corollary 3.2.3. The identity of the group belongs to each
subgroup, so it belongs to their intersection. If elements a; b belong to the intersec-
tion, then they belong to each subgroup in the collection, and so ab�1 belongs to
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each subgroup. This shows that ab�1 belongs to the intersection of all subgroups
in the collection.

19. Let G be a group, and let a 2 G. The set C.a/ D fx 2 G j xa D axg of all
elements of G that commute with a is called the centralizer of a.

(a) Show that C.a/ is a subgroup of G.

Solution: We will use Proposition 3.2.2. (i) Let x; y 2 C.a/. Then xa D ax and
ya D ay. Hence .xy/a D x.ya/ D x.ay/ D .xa/y D .ax/y D a.xy/ and
so xy 2 C.a/. (ii) Since ea D a D ae, we have e 2 C.a/. (iii) If x 2 C.a/,
then xa D ax and so x�1a D .x�1a/.xx�1/ D x�1.ax/x�1 D x�1.xa/x�1 D
.x�1x/ax�1 D ax�1 and x�1 2 C.a/. Therefore C.a/ is a subgroup of G.

21. Let G be a group. The set Z.G/ D fx 2 G j xg D gx for all g 2 Gg of all
elements that commute with every other element of G is called the center of G.

(a) Show that Z.G/ is a subgroup of G.

Solution: (i) Let x; y 2 Z.G/ and g 2 G. Then xg D gx and yg D gy. Hence
.xy/g D x.yg/ D x.gy/ D .xg/y D .gx/y D g.xy/ for all g 2 G and so xy 2
Z.G/. (ii) Since eg D ge for all g 2 G, we have e 2 Z.G/. (iii) Let x 2 Z.G/
and g 2 G. Then xg D gx and so x�1g D x�1gxx�1 D x�1xgx�1 D gx�1 for
all g 2 G. Thus x�1 2 Z.G/. ThusZ.G/ is a subgroup ofG by Proposition 3.2.2.

3.3. Constructing Examples
4. Show that the list of elements of GL2.Z2/ given in Example 3.3.6 is correct.

Solution: To construct an invertible 2�2matrixA over Z2, we can use any nonzero
vector as the first row. Thus the first row can be .1; 0/, .0; 1/, or .1; 1/. Then the
second row must be linearly independent of the first, so it cannot be a multiple of
the first row. If .1; 0/ is the first row, we can use .0; 1/ or .1; 1/ as the second. If
.0; 1/ is the first row, we can use .1; 0/ or .1; 1/ as the second. If .1; 1/ is the first
row, we can use .1; 0/ or .0; 1/ as the second. This gives us the 6 invertible matrices
in Example 3.3.6:�

1 0

0 1

�
,
�
1 1

1 0

�
,
�
0 1

1 1

�
,
�
0 1

1 0

�
,
�
1 1

0 1

�
,
�
1 0

1 1

�
.

7. Let F be a field. Compute the center of GL2.F /.

Solution: As usual, we let 1 denote the multiplicative identity of F . We first note

that
�
1 1

0 1

�
and

�
1 0

1 1

�
are invertible, and so they belong to GL2.F /. Let

X D
�
a b

c d

�
2 Z.GL2.F //. Then

�
a aC b

c c C d

�
D

�
a b

c d

� �
1 1

0 1

�
D
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�
1 1

0 1

� �
a b

c d

�
D

�
aC c b C d

c d

�
and so a D aC c and aC b D bC d .

Thus c D 0 and a D d . Furthermore,
�
aC b b

a a

�
D

�
a b

0 a

� �
1 0

1 1

�
D

�
1 0

1 1

� �
a b

0 a

�
D

�
a b

a aC b

�
implies a C b D a and so b D 0. Thus

X D
�
a 0

0 a

�
and so Z.GL2.F // �

��
a 0

0 a

�ˇ̌
ˇ̌ 0 ¤ a 2 F

�
. Since

�
a 0

0 a

�

is clearly in the center, we have Z.GL2.F // D
��

a 0

0 a

�ˇ̌
ˇ̌ a 2 F �

�
.

Comment: This proof actually computes the center as the intersection of the cen-
tralizers of just two elements, the particular matrices used in the proof.

15. (a) Generalize Definition 3.3.3 to the case of the direct product of n groups.

Definition: Let G1; G2; : : : ; Gn be groups. We define

G1 �G2 � � � � �Gn D f.a1; a2; : : : ; an/ j ai 2 Gi for i D 1; 2; : : : ; ng :

(b) Generalize Proposition 3.3.4 to the case of the direct product of n groups. Prove
that your generalization is true.

Proposition. Let G1; G2; : : : ; Gn be groups.
(i) The direct product G1 �G2 � � � � �Gn is a group under the multiplication

.a1; a2; : : : ; an/.b1; b2; : : : ; bn/ D .a1b1; a2b2; : : : anbn/ :

(ii) If ai 2 Gi has ordermi for i D 1; 2; : : : ; n; then in G1 �G2 � � � � �Gn the
element .a1; a2; : : : an/ has order lcmŒm1; m2; : : : ; mn�.

Proof: (i) The given multiplication defines a binary operation. The associative law
holds since for 1 � i � n and all ai ; bi ; ci 2 Gi we have

.a1; a2; : : : ; an/..b1; b2; : : : ; bn/.c1; c2; : : : ; cn//
D .a1; a2; : : : ; an/.b1c1; b2c2; : : : bncn/
D .a1.b1c1/; a2.b2c2/; : : : ; an.bncn//
D ..a1b1/c1; .a2b2/c2; : : : ; .anbn/cn/
D .a1b1; a2b2; : : : ; anbn/.c1; c2; : : : ; cn/
D ..a1; a2; : : : ; an/.b1; b2; : : : ; bn//.c1; c2; : : : ; cn/.

If ei is the identity element of Gi for i D 1; 2; : : : ; n, then .e1; e2; : : : ; en/ is
easily seen to be the identity element of G1 � G2 � � � � � Gn. Finally, for any
element .a1; a2; : : : ; an/ 2 G1 � G2 � � � � � Gn, we have .a1; a2; : : : ; an/

�1 D
.a�1

1 ; a�1
2 ; : : : ; a�1

n /.
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(ii) Let o.ai / D mi for i D 1; 2; : : : ; n. The order of .a1; a2; : : : ; an/ is the
least positive integer m such that .a1; a2; : : : ; an/

m D .e1; e2; : : : ; en/. Thus for
each i , we have am

i D ei and so mi jm. The least such m such that mi jm for
i D 1; 2; : : : ; n is lcmŒm1; m2; : : : ; mn�.

19. Let G be a group of order 6. Show that G must contain an element of order 2.
Show that it cannot be true that every element different from e has order 2.

Solution: Since jGj is even, by Exercise 3.1.26 there is at least one element of
order 2. Suppose that jGj D 6 and every element of G has order 2. Let a; b 2 G,
a ¤ b; a ¤ e; b ¤ e. Then a2 D b2 D e, so ab D e implies b ¤ a. Thus ab ¤ e,
so o.ab/ D 2 and then ab D .ab/�1 D b�1a�1 D ba. Hence H D fe; a; b; abg
is a subgroup of G of order 4, contradicting Lagrange’s theorem.

20. Let G be a group of order 6, and suppose that a; b 2 G with a of order 3 and b
of order 2. Show that either G is cyclic or ab ¤ ba.

Solution: Let a; b 2 G, with o.a/ D 3 and o.b/ D 2. We claim that G is cyclic
iff ab D ba. If ab D ba, then o.ab/ D lcmŒ2; 3� D 6 and G D habi is cyclic. If
ab ¤ ba, then G is not abelian and hence not cyclic.

21. Let G be any group of order 6. Show that if G is not cyclic, then its multiplica-
tion table must look like that of S3.

Solution: By Exercises 19 and 20, if G is not cyclic then there exist an element
a of order 3 and an element b of order 2 such that ab ¤ ba. Now the elements
e; a; a2; b are all distinct. By cancellation ab ¤ a, ab ¤ a2, and ab ¤ b, and
since a�1 D a2 ¤ b we have ab ¤ e. Thus e; a; a2; b; ab are all distinct. Again
by cancellation a2b ¤ a, a2b ¤ a2, a2b ¤ ab, and a2b ¤ b. We also have
a2 ¤ b, so a2b ¤ e. Thus G D fe; a; a2; b; ab; a2bg.

What is ba? By cancellation ba ¤ a, ba ¤ a2, and ba ¤ b. Since b ¤ a2,
we have ba ¤ e. By assumption ba ¤ ab. By elimination ba D a2b. We can now
complete the multiplication table for G.

� e a a2 b ab a2b

e e a a2 b ab a2b

a a a2 e ab a2b b

a2 a2 e a a2b b ab

b b a2b ab e a2 a

ab ab b a2b a e a2

ab a2b ab b a2 a e
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3.4. Isomorphisms

12. For the field F , let H D
��

1 0

c d

�ˇ̌
ˇ̌ c; d 2 F; d ¤ 0

�
� GL2.F /.

(b) Show thatK D
��

m b

0 1

�ˇ̌
ˇ̌m; b 2 F; m ¤ 0

�
is a subgroup of GL2.F / that

is isomorphic to H .

Solution: Let a D
�
0 1

1 0

�
2 GL2.F /. Then for

�
1 0

c d

�
2 H we have

a

�
1 0

c d

�
a�1 D

�
0 1

1 0

� �
1 0

c d

� �
0 1

1 0

�
D

�
c d

1 0

� �
0 1

1 0

�
D

�
d c

0 1

�
.

This makes it clear that aHa�1 D K, so K is a subgroup by Example 3.2.13, and
then H Š aHa�1 D K by Example 3.4.3.

26. Define � on R by a � b D a C b � 1, for all a; b 2 R. (See Exercise 13 of
Section 3.1.) Show that the group G D .R;�/ is isomorphic to the group .R;C/.
Discussion: Since we need a one-to-one mapping from R to R, is it possible that
one of the simplest cases, a linear function of the form �.x/ D mxCb, might work?
Of course, we need m ¤ 0 to make certain that � is a one-to-one correspondence.
Since the solution to Exercise 13 of Section 3.1 shows that 1 is the identity element
of G, and since 0 is the identity element of R, we would need to have �.1/ D 0,
which forces b D �m.

Solution: For any 0 ¤ m 2 R, define � W G ! R by �.x/ D mx � m, for all
x 2 G. It is clear that � is one-to-one and onto since m ¤ 0. For all a; b 2 G
we have �.a � b/ D �.a C b � 1/ D m.a C b � 1/ �m D ma Cmb � 2m and
�.a/C�.b/ D .ma�m/C.mb�m1/ D maCmb�2m, so �.a�b/ D �.a/C�.b/.
Thus � respects the operations in the two groups, and so � does indeed define an
isomorphism from .G;�/ onto .R;C/.
Note: We have actually shown that there are infinitely many different possible iso-
morphisms. Of course, the simplest case would be to let m D 1 and just use
�.x/ D x�1. Then we can write � as a composite function � , where .x/ D mx
defines an isomorphism from .R;C/ onto itself.

3.5. Cyclic Groups

13. Show that in a finite cyclic group of order n, the equation xm D e has exactly
m solutions, for each positive integer m that is a divisor of n.

Solution: Let G D hai, where o.a/ D n. If m jn then n D mk for some k 2 Z.
We have o.ak/ D n

.k;n/
D n

k
D m, and so fe; ak; a2k; : : : ; a.m�1/kg consists of m
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distinct solutions of xm D e. Suppose that c is a solution to xm D e. Then c D aj

for some j , and o.c/ D n
.j;n/

, where n
.j;n/

jm. Thus there exists a positive integer t
such that nt D m.j; n/. Then mkt D m.j; n/ and so .j; n/ D kt . Since .j; n/ jj
we have j D k � t � r for some positive integer r . Thus c D aj D ak�tr and so
c 2 fe; ak; a2k; : : : ; a.m�1/kg.

17. Let G be a finite group, and suppose that for any two subgroups H and K
either H � K or K � H . Prove that G is cyclic of prime power order.

Solution: SinceG is finite, it has an element of maximal order, say a. Then hai can-
not be properly contained in any other cyclic subgroup, so it follows that hbi � hai
for every b 2 G. Thus every element of G is a power of a, and so G is cyclic, with
G D hai. Suppose that jGj has two distinct prime divisors p and q. By hypothesis
we have either hapi � haqi or haqi � hapi. But then Corollary 3.5.4 (c) implies
that either q jp or p jq, a contradiction. We conclude that G is cyclic of prime
power order.

21. Prove that if p and q are different odd primes, then Z�
pq is not a cyclic group.

Solution: We know that Œ�1�pq has order 2, so by Exercise 13 it is enough to find
one other element of order 2. The Chinese remainder theorem (Theorem 1.3.6)
states that the system of congruences x � 1 .mod p/ and x � �1 .mod q/
has a solution Œa�pq , since p and q are relatively prime. Because p is an odd
prime, Œ�1�pq is not a solution, so Œa�pq ¤ Œ�1�pq . But a2 � 1 .mod p/ and
a2 � 1 .mod q/, so a2 � 1 .mod pq/ since p and q are relatively prime. Thus
Œa�pq has order 2.

3.6. Permutation Groups

21. In the dihedral group Dn D faibj j 0 � i < n; 0 � j < 2g with o.a/ D n,
o.b/ D 2, and ba D a�1b, find the centralizer C.a/ D fx 2 Dn j xa D axg.

Solution: The centralizer C.a/ contains all powers of a, so we have hai � C.a/.
This shows that C.a/ has at least n elements. On the other hand, C.a/ ¤ Dn,
since by definition b does not belong to C.a/. Since hai contains exactly half of
the elements in Dn, Lagrange’s theorem show that there is no subgroup that lies
strictly between hai andDn, so hai � C.a/ � Dn and C.a/ ¤ Dn together imply
that C.a/ D hai.

22. Find the center of the dihedral group Dn.

Solution: Let n � 3. Then Dn D faj ; aj b j 0 � j < ng with an D b2 D e
and ba D an�1b. By induction we have baj D an�j b. Now if x D aj b then
xa D aj ba D aj Cn�1b and ax D aj C1b. Hence xa D ax if and only if
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j Cn�1 � j C1 .mod n/, and this happens if and only if n D 2. Hence x D aj b
is never central.

Now let x D aj . Since x commutes with all powers of a, it will be central if
xb D bx. But bx D baj D an�j b D aj b if and only if n� j � j .mod n/. This
holds for 0 � j < n only if j D 0 or j D m when n D 2m. Thus if n D 2m, then
Z.Dn/ D fe; amg and if n is odd, then Z.Dn/ D feg.

3.7. Homomorphisms

6. Let n and m be positive integers, such that m is a divisor of n. Show that
� W Z�

n ! Z�
m defined by �.Œx�n/ D Œx�m, for all Œx�n 2 Z�

n , is a well-defined
group homomorphism.

Solution: First, � is a well-defined function by Exercise 11 of Section 2.1. Next, �
is a homomorphism since for Œa�n; Œb�n 2 Z�

n , we have �.Œa�nŒb�n/ D �.Œab�n/ D
Œab�m D Œa�mŒb�m D �.Œa�n/�.Œb�n/.

8. Define � W R ! C� by setting �.�/ D ei� , for all � 2 R. Use this version of
the formula in Example 3.7.11 to show that � is a group homomorphism.

Solution: We need to be careful, since the operation in the first group is addition,
and in the second it is multiplication. If �1; �2 2 R, then �.�1 C�2/ D ei.�1C�2/ D
ei�1Ci�2 D ei�1ei�2 D �.�1/�.�2/, and so � preserves the respective operations.

14. Prove that SLn.R/ is a normal subgroup of GLn.R/.

Solution: First, SLn.R/ is a subgroup of GLn.R/ since it contains the identity
matrix, and if A;B 2 SLn.R/, then det.A/ D det.B/ D 1, so det.AB�1/ D
det.A/ det.B�1/ D 1, and thus AB�1 2 SLn.R/.

IfA 2 SLn.R/ andP 2 GLn.R/, then det.PAP�1/Ddet.P / det.A/ det.P�1/

D det.P / � 1 � 1

det.P /
D 1, so PAP�1 2 SLn.R/, showing that SLn.R/ is normal

in GLn.R/

Alternate solution: Here is a slightly more sophisticated proof. Example 3.7.1
shows that the determinant defines a group homomorphism. After observing that
SLn.R/ is the kernel of the determinant homomorphism from GLn.R/ into R, the
result follows from Proposition 3.7.4 (a) (which shows that the kernel of any group
homomorphism is a normal subgroup).

24. Let G1; : : : ; Gn be groups, for n 2 ZC, and let G D f.g1; : : : ; gn/ j gi 2 Gig
be the group of n-tuples with entries in Gi .

(a) Define �i W Gi ! G by �i .gi / D .e1; : : : ; ei�1; gi ; eiC1; : : : ; en/, where gi 2
Gi and ej is the identity element of Gj . Show that �i is a group homomorphism
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and Hi D �i .Gi / D f.e1; : : : ; gi ; : : : ; en/ j gi 2 Gig is a subgroup of G with
Hi Š Gi .

Solution: Since �i .aibi / D .e1; : : : ; aibi ; : : : ; en/ D
.e1; : : : ; ai ; : : : ; en/.e1; : : : ; bi ; : : : ; en/ D �i .ai /�i .bi / for ai ; bi 2 Gi , it follows
that �i is a group homomorphism, and then Hi D �i .Gi / is a subgroup of G by
Proposition 3.7.6. It is clear that �i is one-to-one and maps Gi onto Hi .

(b) Show that G D H1H2 � � �Hn, that elements of Hi and Hj commute, for all
1 � i < j � n, and that Hi \H1 � � �Hi�1HiC1 � � �Hn D feg, for all 1 � i � n.

Solution: We have .g1; ::; gi ; ::; gn/ D
.g1; ::; ei ; ::; en/ � � � .e1; ::; gi ; ::; en/ � � � .e1; ::; ei ; ::; gn/ and
.e1; ::; gi ; ::; ej ; ::; en/.e1; ::; ei ; ::; gj ; ::; en/ D .e1; ::; gi ; ::; gj ; ::; en/ D
.e1; ::; ei ; ::; gj ; ::; en/.e1; ::; gi ; ::; ej ; ::; en/ for all gi 2 Gi and gj 2 Gj . In each
element of the product H1 � � �Hi�1HiC1 � � �Hn, the i th entry is ei , and so the
intersection with Hi is .e1; ::; ei ; ::; en/.

(c) For all .g1; : : : ; gi�1; gi ; giC1; : : : ; gn/ 2 G, define �i W G ! Gi by setting
�i ..g1; : : : ; gi�1; gi ; giC1; : : : ; gn// D gi . Show that �i is a group homomor-
phism with kernel H1 � � �Hi�1HiC1 � � �Hn.

Solution: We have �i ..a1; ::; ai ; ::; an/.b1; ::; bi ; ::; bn// D
�i ..a1b1; ::; aibi ; ::; anbn//D aibi D �i ..a1; ::; ai ; ::; an//�i ..b1; ::; bi ; ::; bn//,
for all aj ; bj 2 Gj , and so �i is a group homomorphism. We have
�i ..g1; ::; gi ; ::; gn// D ei if and only if gi D ei , and so it is clear that ker.�i / is
the product of the other subgroups Hj , with Hi omitted.

(d) Show that �i ı �i D 1Gi
, for 1 � i � n.

Solution: We have .�i ı �i /.gi / D �i .�i .gi // D
�i ..e1; : : : ; ei�1; gi ; eiC1; : : : ; en// D gi , for gi 2 Gi .

(e) Define  W G ! G by  .g/ D .�1�1.g//.�2�2.g// � � � .�n�n.g//, for all
g 2 G. Show that  D 1G , and that if � 2 Sn, then for all g 2 G we have
 .g/ D .��.1/��.1/.g//.��.2/��.2/.g// � � � .��.n/��.n/.g//,

Solution: We have �i�i .g/ D �i .gi / D .e1; : : : ; ei�1; gi ; eiC1; : : : ; en/, for any
element g D .g1; g2; : : : ; gn/ 2 G. The product of the elements �i�i .g/, over all
1 � i � n, yields g, and so  .g/ D g. Since the elements �i�i .g/ and �j �j .g/
commute, the product over all i can be taken in any order.

(f) Let G0 be a group. Show that given group homomorphisms �i W G0 ! Gi , for
1 � i � n, there exists a unique group homomorphism � W G0 ! G such that
�i� D �i , for 1 � i � n.

Solution: Suppose that group homomorphisms �i W G0 ! Gi are given, for 1 �
i � n. For x 2 G0, restating the condition �i� D �i shows that the i th component
of �.x/ must be �i .x/, so the only way to define � W G0 ! G is by setting



20 BEACHY/BLAIR: ABSTRACT ALGEBRA CHAPTER 3

�.x/ D .�1.x/;�2.x/; : : : ;�n.x//. But does this define a group homomorphism?
Yes, since for a; b 2 G0 we have

�.ab/ D .�1.ab/; : : : ;�i .ab/; : : : ;�n.ab/ /

D .�1.a/�1.b/; : : : ;�i .a/�i .b/; : : : ;�n.a/�n.b/ /

D .�1.a/; : : : ;�i .a/; : : : ;�n.a/ / .�1.b/; : : : ;�i .b/; : : : ;�n.b/ /

D �.a/�.b/ :

3.8. Cosets, Normal Subgroups, and Factor Groups

5. Use Example 3.8.1 and the parity mapping defined in Example 3.7.8 to give a
short proof that in any subgroup H of Sn, either all permutations in H are even, or
else half of the permutations in H are even and half are odd.

Solution: Let � W Sn ! f˙1g be the homomorphism defined in Example 3.7.8,
which maps even permutations to 1 and odd permutations to �1. Define � W H !
f˙1g to be the inclusion mapping followed by �. Since � is the composite of two
homomorphisms, it is a homomorphism. Then either � is the trivial mapping, in
which case every permutation in H is even, or else there are two cosets of the
kernel: the set of even permutations in H and the set of odd permutations in H .
This completes the proof, since by Example 3.8.1 both cosets have the same number
of elements.

16. LetG1; G2; G3 be groups such thatG1 is a homomorphic image of bothG2 and
G3. If jG2j D 24 and jG3j D 30, list the possibilities for G1 (up to isomorphism).

Solution: The order of G1 must be a common divisor of 24 and 30, so it is a divisor
of 6. ThusG1 is isomorphic to one of the groups on this list: the trivial one-element
group, Z2, Z3, Z6, or S3. Recall that by Exercise 21 of Section 3.3 any group of
order 6 is either cyclic or isomorphic to the symmetric group S3.
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4 POLYNOMIALS

4.1. Fields; Roots of Polynomials

7. Prove that if p is a prime number, then the multiplicative group Z�
p is cyclic.

Solution: We will use Proposition 3.5.9 (b), which states that a finite abelian group
is cyclic if and only if its exponent is equal to its order. Suppose that the exponent
of Z�

p is m. Then am D 1 for all nonzero a 2 Z�
p , and so the polynomial xm � 1

has p�1 distinct roots in Z�
p , and it follows from Corollary 4.1.12 that p�1 � m.

By definition, m � p � 1 D jZ�
p j, so m D jZ�

p j and therefore Z�
p is cyclic.

8. Let p be a prime number, and let a; b 2 Z�
p . Show that if neither a nor b is a

square, then ab is a square.

Solution: By Exercise 7, we can choose a generator g for Z�
p . If neither a nor b is

a square, then a D gs and b D gt , where s and t are odd. Therefore ab D .gk/2,
where s C t D 2k, and so ab is a square.

4.2. Factors

12. Find the irreducible factors of 2x3 C x2 C 2x C 2 over Z5.

Solution: We first factor out 2, using .2/.�2/ D �4 � 1 .mod 5/. This reduces
the question to factoring p.x/ D x3 � 2x2 C xC 1. Checking for roots shows that
p.0/ D 1, p.1/ D 1, p.�1/ D �3, p.2/ D 3, and p.�2/ � �2, so p.x/ has no
roots in Z5. Then p.x/ is irreducible over Z5 by Proposition 4.2.7.

15. Show that x4 C 1 has a proper factorization over Zp, for all primes p.

Solution: We will show that x4 C 1 can always be factored as the product of two
quadratic polynomials.

If p D 2, then x4 C 1 D .x2 C 1/2.
If p D 3, then x4 C 1 D .x2 C x C 2/.x2 C 2x C 2/. (See the answer to

Exercise 14 (d).)
If p � 5, then Zp contains the elements �1;˙2. Exercise 8 of Section 4.1

shows that if neither �1 nor 2 is a square, then their product �2 must be a square.
If �1 is a square, say a2 D �1, then x4 C 1 D .x2 C a/.x2 � a/. If 2 is a

square, say a2 D 2, then x4 C 1 D .x2 C axC 1/.x2 � axC 1/. If �2 is a square,
say a2 D �2, then x4 C 1 D .x2 C ax � 1/.x2 � ax � 1/.

This completes the proof.

Comments: The proof gives no idea as to how we arrived at these factorizations.
As motivation, we offer the following discussion. Since x4 C 1 is monic, we can
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assume that its factors are monic. Suppose we have a factorization x4 C 1 D
.x2 C axC b/.x2 C cxC d/. Looking at the coefficients of x3 and x, we see that
c D �a, and then ad D ab. If a D 0, then x4 C 1 D .x2 C b/.x2 C d/, forcing
d D �b and so the only possible factorization is x4 C 1 D .x2 C b/.x2 � b/, with
b2 D �1.

If a ¤ 0, then cancelling yields d D b, forcing b D ˙1 since b2 D 1. In
this case the factorization must be x4 C 1 D .x2 C ax C 1/.x2 � ax C 1/ or
x4 C 1 D .x2 C ax � 1/.x2 � ax � 1/.

4.3. Existence of Roots

2. Prove Proposition 4.3.4.

Solution: (a) Given that a.x/ � c.x/ .mod p.x// and b.x/ � d.x/ .mod p.x//,
it follows that p.x/ j .a.x/ � c.x// and p.x/ j .b.x/ � d.x//. Therefore
p.x/ j .a.x/�c.x/Cb.x/�d.x//, and so p.x/ j ..a.x/Cb.x//� .c.x/Cd.x///.
Hence a.x/C b.x/ � c.x/C d.x/ .mod p.x//. Furthermore,
a.x/b.x/ � c.x/d.x/ D a.x/.b.x/ � d.x// C d.x/.a.x/ � c.x// implies that
p.x/ j .a.x/b.x/ � c.x/d.x//. Hence a.x/b.x/ � c.x/d.x/ .mod p.x//.

(b) Since gcd.a.x/; p.x// D 1, there exist polynomials f .x/ and g.x/ such that
f .x/a.x/ C g.x/p.x/ D 1. Since a.x/b.x/ � a.x/c.x/ .mod p.x//, we have
p.x/ j .a.x/b.x/ � a.x/c.x//. Now
b.x/� c.x/ D f .x/a.x/b.x/C g.x/p.x/b.x/� f .x/a.x/c.x/� g.x/p.x/c.x/

D f .x/.a.x/b.x/ � a.x/c.x//C p.x/.g.x/b.x/ � g.x/c.x//.
Since p.x/ ja.x/b.x/ � a.x/c.x/, we have p.x/ j .b.x/ � c.x//, and therefore
b.x/ � c.x/ .mod p.x//.

17. Prove that the set of all matrices over Z3 of the form
�

a b

�b a

�
is a field

isomorphic to Z3Œx�=
˝
x2 C 1

˛
.

Solution: Let F be the given set of matrices, and note that F has 9 elements. The
formulas in Appendix A.5, although given for matrices with entries in R, remain
valid for matrices with entries in Z3. It is then easy to check that F is closed
under addition and multiplication, has a zero element and additive inverses, has a
multiplicative identity, and satisfies the associative, distributive, and commutative
laws. For a matrix in F , if a ¤ 0 and b D 0, then a2 C b2 D 1; if a D 0 and
b ¤ 0, then a2 Cb2 D 1; if a ¤ 0 and b ¤ 0, then a2 Cb2 D 2. Thus the nonzero
matrices in F are invertible, since they have a nonzero determinant, and so F is a
field.
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Define � W Z3Œx�=
˝
x2 C 1

˛ ! F by �.ŒaCbx�/ D a

�
1 0

0 1

�
Cb

�
0 1

�1 0

�
.

The mapping is well-defined since each congruence class in Z3Œx�=
˝
x2 C 1

˛
con-

tains a unique representative of the form aCbx, and simply listing the possible val-
ues of � shows it to be a one-to-one correspondence. It is clear that � will preserve
addition. That � preserves multiplication depends on the fact that the congruence

class Œx�, which satisfies the equation Œx�2 D �Œ1�, maps to the matrix
�

0 1

�1 0

�
,

which satisfies the corresponding equation
�

0 1

�1 0

�2

D �
�
1 0

0 1

�
.

20. Find all powers of Œx� in Z3Œx�=
˝
x2 C x C 2

˛
, and then find Œx��1.

Solution: Since x2 � �x � 2 � 2xC 1 .mod x2 C xC 2/, we have the following
list:

Œx�1 D Œx�,
Œx�2 D Œ2x C 1�,
Œx�3 D Œx�Œ2x C 1� D Œ2x2 C x� D Œ4x C 2C x/� D Œ2x C 2�,
Œx�4 D Œx�Œ2x C 2� D Œ2x2 C 2x� D Œ4x C 2C 2x� D Œ2� D Œ�1�,
Œx�5 D Œ�1�Œx� D Œ2x�,
Œx�6 D Œ�1�Œx2� D Œx C 2�,
Œx�7 D Œ�1�Œx�3 D Œx C 1�,
Œx�8 D .Œx�4/2 D Œ1�.

Since Œx� has order 8 in the multiplicative group of the field, its inverse is Œx�7 D
Œx C 1�.

Comment: Each nonzero element of Z3=
˝
x2 C x � 1˛ is a power of Œx�, so we have

shown that the multiplicative group of this finite field is cyclic, with generator Œx�.

4.4. Polynomials over Z, Q, R, and C

1. Let f .x/; g.x/ 2 ZŒx�, and suppose that g.x/ is monic. Show that there exist
unique polynomials q.x/; r.x/ 2 ZŒx� with f .x/ D q.x/g.x/Cr.x/, where either
deg.r.x// < deg.g.x// or r.x/ D 0.

Solution: Let f .x/ D amx
m C : : :C a1xC a0, and g.x/ D xn C : : :C b0, where

am ¤ 0. If f .x/ has lower degree than g.x/, then q.x/ D 0 and r.x/ D f .x/
satisfy the requirements. The proof of the other case will use induction on the
degree of f .x/.

If f .x/ has degree zero, it is easy to see that the theorem holds. In order to ap-
peal to the second principle of mathematical induction, assume that the theorem is
true for all polynomials f .x/ of degree less thanm. (We are assuming thatm � n.)
The reduction to a polynomial of lower degree is achieved by using the procedure
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outlined in Example 4.2.1. We divide amx
m by xn to get amx

m�n, then multiply
by g.x/ and subtract from f .x/. This gives f1.x/ D f .x/� amx

m�ng.x/, where
f1.x/ has degree less than m since the leading term of f .x/ has been cancelled by
amx

m�nxn. Now by the induction hypothesis there exist q1.x/; r.x/ 2 ZŒx� such
that f1.x/ D q1.x/g.x/ C r.x/, where the degree of r.x/ is less than n, unless
r.x/ D 0. Since f .x/ D f1.x/ C amx

m�ng.x/, substitution gives the desired
result:

f .x/ D �
q1.x/C amx

m�n
�
g.x/C r.x/ :

The quotient q.x/ D q1.x/ C amx
m�n has coefficients in Z, since am 2 Z and

q1.x/ 2 ZŒx�. The proof that the quotient q.x/ and remainder r.x/ are unique
follows exactly as in the proof of Theorem 4.2.1.



BEACHY/BLAIR: SELECTED SOLUTIONS FROM CHAPTER 5 25

5 RINGS

5.1. Commutative Rings; Integral Domains

8. Let R be a commutative ring, and let f .x/; g.x/2RŒx�, where g.x/ is monic.
Show that there exist unique polynomials q.x/, r.x/ 2 RŒx� such that f .x/ D
q.x/g.x/Cr.x/, where deg.r.x//<deg.g.x// or r.x/D0.

Solution: Let f .x/Damx
mC: : :Ca1xCa0 and g.x/DxnCbn�1x

n�1C: : :Cb0,
where am ¤ 0. In the proof of Theorem 4.2.1, the induction step uses the poly-
nomial f1.x/ D f .x/ � amb

�1
n xm�ng.x/, where bn is the leading coefficient

of g.x/. In this case g.x/ is monic, so bn D 1, and we can use the polynomial
f1.x/ D f .x/ � amx

m�ng.x/ instead.
The next difficulty arises in showing that the quotient q.x/ and remainder r.x/

are unique. The proof of Theorem 4.2.1 uses Proposition 4.1.5, which does hold
if R is an integral domain (by Example 5.1.8) but may fail in general. If f .x/ D
q1.x/g.x/C r1.x/ and f .x/ D q2.x/g.x/C r2.x/, then .q1.x/ � q2.x//g.x/ D
r2.x/ � r1.x/, as in the proof of Theorem 4.2.1. If q2.x/ � q1.x/ ¤ 0, then the
degree of .q2.x/�q1.x//g.x/ is greater than or equal to the degree of g.x/ because
g.x/ is monic. The degree of r2.x/ � r1.x/ is less than the degree of g.x/, so we
still reach a contradiction, completing the proof.

5.2. Ring Homomorphisms

6. Show that the ring of Gaussian integers ZŒi � defined in Example 5.1.5 is isomor-
phic to ZŒx�=

˝
x2 C 1

˛
.

Solution: Define � W ZŒx� ! C by �.f .x// D f .i/, for all f .x/ 2 ZŒx�. This is
the mapping defined in Proposition 5.2.7, and so we know that it is a ring homo-
morphism. It is clear that �.ZŒx�/ D ZŒi � and that x2 C 1 2 ker.�/.

To show that ker.�/ D ˝
x2C1˛, suppose that f .x/ 2 ker.�/. Considering f .x/

as an element of QŒx�, we can divide by x2C1 to get f .x/ D q.x/.x2C1/C r.x/,
where r.x/ D 0 or deg.r.x// < 2. Since x2C1 is monic, it follows from Exercise 1
of Section 4.4 that q.x/ and r.x/ belong to ZŒx�, so r.x/ D m C nx for some
m; n 2 Z. Substituting x D i shows that m C ni D 0 in C, so m D n D 0, and
therefore r.x/ is the zero polynomial. Thus we have shown that f .x/ 2 ˝

x2 C 1
˛
.

Since ker.�/ D ˝
x2 C 1

˛
and �.ZŒx�/ D ZŒi �, it follows from the fundamental

homomorphism theorem that ZŒi � Š ZŒx�=
˝
x2 C 1

˛
.

8. Let F be the field Z2Œx�=
˝
x2 C x C 1

˛
defined in Example 4.3.4. Show that F

has precisely two automorphisms.
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Solution: Any automorphism maps 0 to 0 and 1 to 1. Using the congruence classes
given in Example 4.3.4, the only possibility to define an automorphism � W F ! F
that is not the identity mapping is to define �.Œx�/ D Œ1C x� and �.Œ1C x�/ D Œx�.
To show that this defines an automorphism, note that Œ1 C x� D Œx2� D Œx�2,
and consider the formula �.r/ D r2, for all r 2 F . Then �.0/ D 0 and �.1/ D 1,
�.Œx�/ D Œx�2 D Œ1Cx�, and �.Œ1Cx�/ D Œ1Cx�2 D Œx�, by the multiplication table
given in Example 4.3.4. For r; s 2 F , we have �.rs/ D .rs/2 D r2s2 D �.r/�.s/.
We also have �.r C s/ D .r C s/2 D r2 C 2rsC s2. But since Œ1� C Œ1� D Œ0�, the
field F has characteristic 2, so we have 2rs D 0. Thus �.r C s/ D �.r/ C �.s/,
verifying that � D � is the second automorphism of F .

Looking ahead: The mapping � is a special case of the Frobenius automorphism
introduced in Definition 8.1.8.

5.3. Ideals and Factor Rings

11. Show that if R is a Boolean ring, then every prime ideal of R is maximal.

Solution: We will prove a stronger result: if R is a Boolean ring and P is a prime
ideal of R, then R=P Š Z2. Since Z2 is a field, Proposition 5.3.9 (a) implies that
P is a maximal ideal.

If a 2 R, then a2 D a, and so a.a � 1/ D 0. Since P is an ideal, it contains 0,
and then a.a � 1/ 2 P implies a 2 P or a � 1 2 P , since P is prime. Thus each
element of R is in either P or 1 C P , so there are only two cosets of P in R=P ,
and therefore R=P must be the ring Z2.

17. Let I; J be ideals of the commutative ringR, and for r 2 R, define the function
� W R ! R=I ˚R=J by �.r/ D .r C I; r C J /.

(a) Show that � is a ring homomorphism, with ker.�/ D I \ J .

Solution: The fact that � is a ring homomorphism follows immediately from the
definitions of the operations in a direct sum and in a factor ring. Since the zero
element of R=I ˚R=J is .0C I; 0C J /, we have r 2 ker.�/ if and only if r 2 I
and r 2 J , so ker.�/ D I \ J .

(b) Show that if I C J D R, then � is onto, and thus R=.I \ J / Š R=I ˚R=J .

Solution: If I C J D R, then we can write 1 D x C y, for some x 2 I and
y 2 J . Given any element .aC I; b C J / 2 R=I ˚R=J , consider r D bx C ay.
Then r C I D bx C ay C I D ay C I D a.1 � x/C I D a C I , and similarly
r C J D b C J . Thus �.r/ D .a C I; b C J /, and � is onto. The isomorphism
follows from the fundamental homomorphism theorem.

Note: This can be called the Chinese remainder theorem for commutative rings. It
is interesting to compare the above proof with the one given for Theorem 1.3.6.
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20. Let I; J be ideals of the commutative ring R. Show that if I C J D R, then
I 2 C J 2 D R.

Solution: If I C J D R, then there exist a 2 I and b 2 J with aC b D 1. Cubing
both sides gives us a3 C 3a2b C 3ab2 C b3 D 1. Then a3 C 3a2b 2 I 2 and
3ab2 C b3 2 J 2, so I 2 C J 2 D R.

32. Let R be the set of all rational numbers m=n such that n is odd.

(a) Show that R is a subring of Q.

Solution: If m1

n1
; m2

n2
2 R, then n1 and n2 are odd. Since n1n2 is odd, we have

m1

n1
˙ m2

n2
D m1n2˙m2n1

n1n2
2 R and m1

n1
� m2

n2
D m1m2

n1n2
2 R. Thus R is a subring of Q.

(b) Let 2kR D fm=n 2 R j m is a multiple of 2k and n is oddg, for any positive
integer k. Show that 2kR is an ideal of R.

Solution: If m1

n1
and m2

n2
belong to 2kR, then n1 and n2 are odd and 2k jm1 and

2k jm2. Then n1n2 is odd and 2k j .m1n2 ˙m2n1/, and so m1

n1
˙ m2

n2
D m1n2˙m2n1

n1n2

belongs to 2kR. If r
s

2 R and m
n

2 2kR, then s and n are odd and 2k jm. Then ns
is odd and 2k jmr . Hence r

s
� m

n
D rm

ns
2 2kR. Therefore 2kR is an ideal of R.

(c) Show that each proper nonzero ideal of R has the form 2kR, for some positive
integer k.

Solution: Let I be a proper nonzero ideal of R, with 0 ¤ m0

n0
2 I . Then it is easy

to check that I \ Z is an ideal of Z, and m0 D n0 � m0

n0
is a nonzero element of

I \ Z. Therefore I \ Z D uZ, for some nonzero u 2 Z. Then u cannot be odd,
since this would imply that 1 D 1

u
� u 2 I , so we can write u D 2kv, where 26 j v

and k is positive. Then for any m
n

2 I , we have n � m
n

D qu, for some q 2 Z.
Therefore m

n
D 2k � qv

n
, as required.

(d) Show that R=2kR is isomorphic to Z2k .

Solution: Given m
n

2 R, since .n; 2k/ D 1 there exist u; v 2 Z with 2kvCnu D 1.

Hencem D mnuCmv2k , and so m
n

D muCmv2k

n
, which implies that m

n
C2kR D

muC2kR. Writemu D 2kqC r , where 0 � r < 2k . ThenmuC2kR D rC2kR

where 0 � r < 2k . If r1 C 2kR D r2 C 2kR where 0 � r1 < 2
k and 0 � r2 < 2

k ,
then r1 � r2 D m2k

n
, where n is odd. Hence 2k jn.r1 � r2/, and since .2k; n/ D 1

we have r1 � r2 .mod 2k/. Since 0 � r1 < 2
k and 0 � r2 < 2

k we have r1 D r2.
Thus every element of R=2kR can be written uniquely in the form r C 2kR where
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0 � r < 2k and r 2 Z. Define � W R=2kR ! Z2k by �.r C 2kR/ D Œr �2k . Since

�..r1 C 2kR/C .r2 C 2kR// D �.r C 2kR/ D Œr �2k

D Œr1�2k C Œr2�2k

D �.r1 C 2kR/C �.r2 C 2kR/

and

�..r1 C 2kR/.r2 C 2kR// D �.r1r2 C 2kR/ D �.s C 2kR/

D Œs�2k D Œr1�2k Œr2�2k

D �.r1 C 2kR/�.r2 C 2kR/

where r � r1 C r2 .mod 2k/ with 0 � r < 2k and s � r1r2 .mod 2k/ with
0 � s < 2k , it follows that � is a ring homomorphism.

Given Œr �2k 2 Z2k we have �.r C 2kR/ D Œr �2k and so � is onto.

(e) Show that 2R is the unique maximal ideal of R.

Solution: It follows from part (d) that 2R is a maximal ideal, since R=2R is a field.
It follows from part (c) that every other proper ideal is contained in 2R.

5.4. Quotient Fields
12. Show that if P is a prime ideal ofD, thenDP D fa=b 2 Q.D/ j b 62 P g is an
integral domain with D � DP � Q.D/.

Solution: Let a=b and c=d belong toDP . Then b; d 2 D �P , and so bd 2 D �P
since P is a prime ideal. It follows that a=b C c=d D .ad C bc/=.bd/ 2 DP

and .a=b/.c=d/ D .ac/=.bd/ 2 DP , and so DP is closed under addition and
multiplication. Since 1 62 P , the given set includes D. Finally, since Q.D/ is a
field, the subring DP is an integral domain.

13. In the ring DP defined in Exercise 12, let M D fa=b 2 DP j a 2 P g.

(a) Show that M is an ideal of DP .

Solution: The subsetM is nonempty, since 0 D 0=1 2 M . Let a=b and c=d belong
to M . Then .a=b/˙ .c=d/ D .ad ˙ bc/=.bd/ 2 M since a; c 2 P implies that
ad ˙ bc 2 P . If r=s 2 DP , then .r=s/ � .a=b/ D ra=sb 2 M since ra 2 P .
Therefore M is an ideal of DP .

(b) Show that DP =M Š Q.D=P /, and conclude that M is a maximal ideal of
DP .

Solution: Note that we have the following chain of subrings: D � DP � Q.D/.
It is clear that P � D \M . If a=b 2 D \M , then a=b � r=1 for some r 2 D, so
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rb D a 2 P . Since P is a prime ideal and b … P , we must have r 2 P , showing
that P D D \M .

Since P D D \M , the inclusion � W D ! DP maps P into M , and therefore
� W D=P ! DP =M defined by �.xCP / D .x=1/CM is well-defined. It is
easy to check that � is a ring homomorphism, since its definition just depends on
an inclusion mapping. If b … P , then b=1 … M , and so � has zero kernel, and is
therefore one-to-one.

For b … P , the element bCP is invertible in Q.D=P /, and �.bCP / D
.b=1/CM is invertible in DP =M since ..b=1/CM/..1=b/CM/ D 1CM . As in
Theorem 5.4.6 it can be shown that there exists a one-to-one ring homomorphism
b� W Q.D=P / ! DP =M defined by b�

�
xCP
yCP

�
D �.xCP /

�
�.yCP /

��1
, for

xCP; yCP inQ.D=P /, where yCP is nonzero. For each .a=b/CM inDP =M ,
we have

.a=b/CM D..a=1/CM/ ..b=1/CM/�1 Db�.aCP /b�.bCP /�1 Db�
�
aCP
bCP

�
;

and so b� is onto. Thus DP =M is isomorphic to a field, and so M is a maximal
ideal. The following diagram shows the mappings � and b� .

D=P �
❅

❅
❅❘

�

Q.D=P /

❄
b�

DP =M
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6 FIELDS

6.1. Algebraic Elements

7. Let u; v 2 QC, where u ¤ v and u; v; uv are not squares. Find the minimal
polynomial for

p
uC p

v over Q.

Solution: Let ˛ D p
u C p

v. Then
�
˛ � p

u
�2 D v and so ˛2 � 2

p
u˛ C u D

v. Thus ˛2 C u � v D 2
p
u˛ and therefore

�
˛2 C u � v�2 D 4u˛2. Hence

˛4 C 2.u � v/˛2 C .u � v/2 D 4u˛2 and so ˛4 � 2.uC v/˛2 C .u � v/2 D 0.
Thus ˛ is a root of f .x/ D x4 � 2.uC v/x2 C .u � v/2.

We will find all the roots of f .x/. By the quadratic formula, we have

x2 D 2.uC v/˙
p
4.uC v/2 � 4.u � v/2

2

D uC v ˙
p
4uv

D u˙ 2
p
u

p
v C v

D .
p
u˙ p

v/2 :

Thus x D ˙.pu˙ p
v/, so the set S of four roots of f .x/ is S D ˚˙p

u˙ p
v
�
.

We will show that f .x/ is irreducible in QŒx�. Since none of the four roots of
f .x/ is an element of Q, f .x/ has no factor of degree 1 in QŒx�. If f .x/ had a
factor h.x/ of degree 2 in QŒx�, then h.x/ would have two roots in the set S . Let
r1 D p

uC p
v, r2 D p

u� p
v, r3 D �p

uC p
v, r4 D �p

u� p
v. If ri ; rj are

two roots of h.x/, then ri C rj 2 Q and rirj 2 Q by Exercise 10 of Section 4.4.
Since r1 C r2 62 Q, r1 C r3 62 Q, r1r4 62 Q, r2r3 62 Q, r2 C r4 62 Q, r3 C r4 62 Q,
no such factor h.x/ of degree 2 exists.

Since f .x/ is irreducible, it is the minimal polynomial of
p
v C p

v over Q.

6.2. Finite and Algebraic Elements
5. Let F � K be an extension field, with u 2 F . Show that if ŒK.u/ W K� is an odd
number, then K.u2/ D K.u/.

Solution: Since u2 2 K.u/, we have K.u/ � K.u2/ � K. Suppose that u 62
K.u2/. Then x2 �u2 is irreducible overK.u2/ since it has no roots inK.u2/, so u
is a root of the irreducible polynomial x2�u2 overK.u2/. Thus ŒK.u/ W K.u2/� D
2, and therefore 2 is a factor of ŒK.u/ W K�. This contracts the assumption that
ŒK.u/ W K� is odd.

7. Let F be a field generated over the fieldK by u and v of relatively prime degrees
m and n, respectively, over K. Prove that ŒF W K� D mn.
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Solution: Since F D K.u; v/ � K.u/ � K, where ŒK.u/ W K� D m and
ŒK.u; v/ W K.u/� � n, we have ŒF W K� � mn. But ŒK.v/ W K� D n is a divisor of
ŒF W K�, and since gcd.m; n/ D 1, we must have ŒF W K� D mn.
Note: A proof can also be given using Exercise 6.

8. Find the degree of 3
p
2C i over Q

Solution: Let u D 3
p
2C i , so that u � i D 3

p
2. Then .u � i/3 D 2, so we have

u3 � 3iu2 C 3i2u � i3 D 2, or u3 � 3iu2 � 3u C i D 2. Solving for i we
get i D .u3 � 3u � 2/=.3u2 � 1/, and this shows that i 2 Q. 3

p
2 C i/. Thus

3
p
2 2 Q. 3

p
2C i/, and so Q. 3

p
2C i/ D Q. 3

p
2; i/.

Since x3 � 2 is irreducible over Q, the number 3
p
2 has degree 3 over Q. Since

x2 C 1 is irreducible over Q, we see that i has degree 2 over Q. It follows from
Exercise 7 that therefore ŒQ. 3

p
2C i/ W Q� D 6.

6.4. Splitting Fields

1. Determine the splitting fields in C for the following polynomials (over Q).

(c) x4 C 4

Solution: We have x4 C 4 D .x2 C 2x C 2/.x2 � 2x C 2/, where the factors are
irreducible by Eisenstein’s criterion, with p D 2. Applying the quadratic formula,
we see that the roots are ˙1˙ i , so the splitting field is Q.i/, which has degree 2
over Q.

Alternate solution: We could also solve the equation x4 D �4. To find one root, use
DeMoivre’s theorem to get 4

p�1 D 1p
2

C 1p
2
i , and then multiply by 4

p
4 D p

2,
to get 1C i . The other roots are found by multiplying by the powers of i , because
it is a primitive 4th root of unity.

2. Determine the splitting fields in C for the following polynomials (over Q).

(c) x4 C 1

Solution: Let F be the splitting field for x4 C1 overQ. Since .xC1/4 C1 satisfies
Eisenstein’s criterion, x4C1 is irreducible over Q, and so adjoining a root of x4C1
to Q will produce an extension of degree 4 by Proposition 6.2.2. Thus ŒF W Q� � 4.

To find a 4th root of �1, we can use the procedure outlined in Example A.5.3 of
Appendix A.5, which yields the root

p
2

2
C

p
2

2
i . To find all roots, we can multiply

this one by the 4th roots of unity: ˙1;˙i . It is then clear that F � Q.
p
2; i/, and

since ŒQ.
p
2; i/ W Q� D 4, we must have F D Q.

p
2; i/.
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Alternate solution: We have
x4 C 1 D .x2 C i/.x2 � i/ D .x C i

p
i/.x � ipi/.x C p

i/.x � p
i/.

Since
p
i D .

p
2 C p

2i/=2 it follows that the splitting field of x4 C 1 over Q is
Q.

p
i/ D Q.i

p
i ;

p
i/ D Q.

p
2; i/.

(d) x6 � 1
Discussion: Be careful here–this polynomial is not irreducible. In fact, x6 � 1
factors in two ways, and provides an important clue. Note that x6�1 D .x3/2�1 D
.x3�1/.x3C1/ D .x�1/.x2CxC1/.xC1/.x2�xC1/ and x6�1 D .x2/3�1 D
.x2 � 1/.x4 C x2 C 1/.

Solution: We have
x6 � 1 D .x3 � 1/.x3 C 1/ D .x � 1/.x2 C x C 1/.x C 1/.x2 � x C 1/.

The roots of x2 C xC 1 are the primitive third roots of unity. (See Definition 4.4.8
and Example A.5.1). The roots of x2 �xC 1 are therefore the primitive sixth roots
of unity. Adjoining a root ! D 1

2
C

p
3

2
i of x2 �xC 1 gives all four of these roots,

and so Q.!/ is the splitting field of x6 � 1 over Q, with ŒQ.!/ W Q� D 2.

11. Let K be a field, and let F be an extension field of K. Let � W F ! F be
an automorphism of F such that �.a/ D a, for all a 2 K. Show that for any
polynomial f .x/ 2 KŒx�, and any root u 2 F of f .x/, the image �.u/ must be a
root of f .x/.

Solution: Let f .x/ D a0 C a1x C : : :C anx
n, where ai 2 K, for i D 0; 1; : : : ; n.

If u 2 F with f .u/ D 0, then we have �.f .u// D �.a0 C a1uC : : :C anu
n/ D

�.a0/C �.a1u/C : : :C �.anu
n/ D �.a0/C �.a1/�.u/C : : :C �.an/.�.u//

n

since � preserves sums and products. Finally, since �.ai / D ai for i D 0; 1; : : : ; n,
we have �.f .u// D a0 C a1�.u/C : : :C an.�.u//

n. Since f .u/ D 0, we must
have �.f .u// D 0, and thus a0 C a1�.u/ C : : : C an.�.u//

n D 0, showing that
f .�.u// D 0. This completes the proof that �.u/ is a root of f .x/.

6.5. Finite Fields

4. (a) Factor x6 � 1 over GF.7/

Solution: This is a direct application of Theorem 6.5.2. We have
x6 � 1 D .x � 1/.x C 1/.x � 2/.x C 2/.x � 3/.x C 3/.

(b) Factor x5 � 1 over GF.11/

Solution: Looking for roots of x5 �1 in GF.11/ is the same as looking for elements
whose order is a divisor of 5 in the multiplicative group GF.11/�. Theorem 6.5.10
implies that GF.11/� is cyclic of order 10. Thus it contains 4 elements of order 5,
which means the x5 � 1 must split over GF.11/. To look for a generator, we begin
with 2. The relevant powers of 2 are 22 D 4 and 25 � �1, so 2must be a generator



BEACHY/BLAIR: SELECTED SOLUTIONS FROM CHAPTER 6 33

since it has order 10. The even powers of 2 have order 5, and these are 22 D 4,
24 � 5, 26 � 9, and 28 � 3. Therefore x5�1 D .x�1/.x�3/.x�4/.x�5/.x�9/
over GF.11/.

6. Find the splitting field of x4 � 1 over GF.7/.

Solution: We have x4 � 1 D .x � 1/.x C 1/.x2 C 1/. A quick check of ˙2 and
˙3 shows that they are not roots of x2 C 1, so x2 C 1 is irreducible over GF.7/. To
obtain the splitting field we must adjoin a root of x2 C 1, so we get a splitting field
GF.72/ Š Z7Œx�=

˝
x2 C 1

˛
of degree 2 over GF.7/.

15. Let F be a field whose multiplicative group F � is cyclic. Prove that F must
be a finite field.

Solution: Suppose that F � D hui. If char.F / ¤ 2, then �1 ¤ 1, so �1 2 F � and
therefore �1 D un for some nonzero integer n. Then u2n D 1, so hui is finite, and
therefore F is finite.

If char.F / D 2, and u ¤ 1, then 1Cu ¤ 0, so 1Cu D un or 1Cu D u�n, for
some positive integer n. Then un�u�1 D 0 in the first case, and unC1Cun�1 D 0
in the second, so u is algebraic over the base field GF.2/. Thus F D GF.2/.u/ is
finite.
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7 STRUCTURE OF GROUPS

7.1. Isomorphism Theorems; Automorphisms

6. Prove that a finite group whose only automorphism is the identity map must have
order at most two.

Solution: Let G be a nontrivial finite group with Aut.G/ D f1Gg. Since all inner
automorphisms are trivial, G is abelian. Then ˛ W G ! G defined by ˛.g/ D g�1,
for all g 2 G, is an automorphism since it is a one-to-one correspondence and
˛.ab/ D .ab/�1 D .ba/�1 D a�1b�1 D ˛.a/˛.b/, for all a; b 2 G. Since ˛ is
trivial, we have g D g�1 for all g 2 G, and thus every nontrivial element of G has
order 2. If G is written additively, we can therefore define a vector space structure
over the field Z2 by defining 0 � x D 0 and 1 � x D x, for all x 2 G. Since G
is finite, it has a basis by Theorem A.7.10. If dim.G/ � 2, then the function that
interchanges two basis elements is a nontrivial automorphism of G. We conclude
that dim.G/ D 1, and so jGj D 2.

19. LetG be a group and letN be a normal subgroup ofG of finite index. Suppose
that H is a finite subgroup of G and that the order of H is relatively prime to the
index of N in G. Prove that H is contained in N .

Solution: Let � W G ! G=N be the natural projection. Then �.H/ is a subgroup
of G=N , so its order must be a divisor of jG=N j. On the other hand, j�.H/j must
be a divisor of jH j. Since gcd.jH j; ŒG W N �/ D 1, we must have j�.H/j D 1,
which implies that H � ker.�/ D N .

7.2. Conjugacy

9. Let G be a finite group with ŒG W Z.G/� D n. Show that the number of elements
in each conjugacy class of G is a divisor of n.

Solution: By Proposition 7.2.5, the conjugacy class of a 2 G has ŒG W C.a/�
elements. Since Z.G/ � C.a/ � G, it follows from Lagrange’s theorem that
jGj D ŒG W Z.G/� � jZ.G/j and then

jGj D ŒG W C.a/� � jC.a/j D ŒG W C.a/� � ŒC.a/ W Z.G/� � jZ.G/j :
Therefore n D ŒG W Z.G/� D ŒG W C.a/� � ŒC.a/ W Z.G/�, completing the proof.

18. Let � 2 An, and let CSn
.�/ and CAn

.�/ denote the centralizers of � in Sn and
An, respectively.

(a) Show that either CAn
.�/ D CSn

.�/ or ŒCSn
.�/ W CAn

.�/� D 2.
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Solution: By Exercise 5 of Section 3.8 we know that if H is any subgroup of
Sn, then either H \ An D H or H \ An has index 2 in H . Since CAn

.�/ D
CSn

.�/ \ An, either CAn
.�/ D CSn

.�/ or else CAn
.�/ has index 2 in CSn

.�/.

(b) Show that the conjugacy class of � in An is either the same as its conjugacy
class in Sn or else has half as many elements.

Solution: Since CAn
.�/ � CSn

.�/ � Sn and CAn
.�/ � An � Sn, we have

ŒSn W CSn
.�/�ŒCSn

.�/ W CAn
.�/� D ŒSn W CAn

.�/� D ŒSn W An�ŒAn W CAn
.�/� :

If ŒCSn
.�/ W CAn

.�/� D 2 (the second case in part (a)), then dividing the above
equation by 2 gives us ŒAn W CAn

.�/� D ŒSn W CSn
.�/�, and so � has the same

number of conjugates in An as in Sn.
If CSn

.�/ D CAn
.�/ (the first case in part (a)), then ŒSn W CSn

.�/� D
ŒSn W CAn

.�/� D 2ŒAn W CAn
.�/�, and so � has the half the number of conjugates

in An as in Sn.

(c) Find the center of the alternating group An.

Solution: In the case n D 3, we have Z.A3/ D A3 since A3 is abelian. If n � 4,
then we claim that Z.An/ D f.1/g. This proof illustrates the use of conjugacy
classes, but we note that Theorem 7.7.4, which shows that An is simple for n � 5,
gives a much shorter proof for n � 5.

Since the conjugacy class of an element � ¤ .1/ in Sn consists of all permu-
tations with a given cycle structure, it has more than 2 elements if n � 4, and
therefore its conjugacy class in An has more than 1 element. Thus the identity .1/
is the only element whose conjugacy class consists of exactly one element, which
shows that the center is f.1/g.

22. Let N be a normal subgroup of a group G. Suppose that jN j D 5 and jGj is
odd. Prove that N is contained in the center of G.

Solution: Since jN j D 5, the subgroup N is cyclic, say N D hai. It suffices to
show that a 2 Z.G/, which is equivalent to showing that a has no conjugates other
than itself. We first note that since N is normal in G, any conjugate of a must be
in N . We next note that if x is conjugate to y, which we will write x � y, then
xn � yn. Finally, we note that the number of conjugates of a must be a divisor of
G.

Case 1. If a � a2, then a2 � a4, and a4 � a8 D a3.
Case 2. If a � a3, then a3 � a9 D a4, and a4 � a12 D a2.
Case 3. If a � a4, then a2 � a8 D a3.
In the first two cases a has 4 conjugates, which contradicts the assumption that

G has odd order. In the last case, a has either 2 or 4 conjugates, which again leads
to the same contradiction.
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7.3. Groups Acting on Sets

2. Let H be a subgroup of G, and let S denote the set of left cosets of H . Define a
group action of G on S by setting a � .xH/ D axH , for all a; x 2 G.

(a) Let � W G ! Sym.S/ be the homomorphism that corresponds to the group
action defined above. Show that ker.�/ is the largest normal subgroup of G that is
contained in H .

Solution: For a 2 G we have �.a/ D �a, where �a W S ! S is given by
�a.xH/ D a.xH/. It is routine to check that �a is well-defined, one-to-one,
and onto. Now

ker.�/ D fa 2 G j �a.xH/ D xH for all x 2 Gg
D fa 2 G j axH D xH for all x 2 Gg
D fa 2 G j x�1ax 2 H for all x 2 Gg :

Clearly, ker.�/ � H and ker.�/ is a normal subgroup of G. Let N be a normal
subgroup of G with N � H . Then for all x 2 G, we have x�1Nx � N � H , and
so N � ker.�/.

(b) Assume that G is finite and let ŒG W H � D n. Show that if nŠ is not divisible by
jGj, then H must contain a nontrivial normal subgroup of G.

Solution: Since ŒG W H � D n, we have jS j D n and j Sym.S/j D nŠ. If jGj6 j nŠ,
then the homomorphism � of part (a) is not one-to-one, and so ker.�/ ¤ feg.
Hence ker.�/ is a nontrivial normal subgroup of G, and ker.�/ � H .

3. Let G be a group which has a subgroup of index 6. Prove that G has a normal
subgroup whose index is a divisor of 720.

Solution: Suppose that H is a subgroup with index 6. Letting G act by multiplica-
tion on the left cosets of H (as in Exercise 2) produces a homomorphism from G
into S6. The order of the image must be a divisor of jS6j D 720, and so the index
of the kernel is a divisor of 720.

4. Let G act on the subgroup H by conjugation, let S be the set of all conjugates
of H , and let � W G ! Sym.S/ be the corresponding homomorphism. Show that
ker.�/ is the intersection of the normalizers N.aHa�1/ of all conjugates of H .

Solution: We have x 2 ker.�/ iff x.aHa�1/x�1 D aHa�1 for all a 2 G.

10. Let F D GF.3/, G D GL2.F /, and let N be the center of G. Prove that
G=N Š S4 by defining an action of G on the four one-dimensional subspaces of
F 2.
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Solution: In F 2 there are 4 one-dimensional subspaces, with respective basis ele-

ments
�
1

0

�
,
�
0

1

�
,
�
1

1

�
,
�
1

2

�
. Each matrix in G represents an isomorphism

of F 2, and so it simply permutes these one-dimensional subspaces. Thus we can
let S be the set of one-dimensional subspaces, and let G act on them as described
above. Multiplying by a scalar leaves each one-dimensional subspace fixed, and

the two scalar transformations
�
1 0

0 1

�
,

�
2 0

0 2

�
, are the only linear transfor-

mations to do so. Thus the action of G defines a homomorphism into S4 whose
kernel is the set of scalar matrices, which is precisely the center N by Exercise 7
of Section 3.3. Since jGj D 48 by Exercise 5 of Section 3.3 and N consists of
two scalar matrices, we have jG=N j D 24. It follows that the homomorphism must
map G=N onto S4, since jS4j D 4Š D 24, and thus G=N Š S4.

16. If G is a finite group of order n and p is the least prime such that pjn, show
that any subgroup of index p is normal in G.

Solution: Let H be a subgroup of index p, and let S D fxH j x 2 Gg. Let
� W G ! Sym.S/ be the homomorphism of Exercise 2 (a). If n jpŠ, then p jn
implies that n D p, in which case H D feg. Thus we may assume that n6 j pŠ, in
which case ker.�/ is a nontrivial normal subgroup of G that is contained in H , by
Exercise 2 (b). If we let k D ŒG W ker.�/�, then k jpŠ and k jn. Since p is the
smallest prime that divides n, we have k D p, and so H D ker.�/ is a normal
subgroup.

7.4. The Sylow Theorems

3. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of
G, then the number of Sylow p-subgroups of N is the same as that of G.

Solution: Suppose that N contains the Sylow p-subgroup P . Then since N is
normal it also contains all of the conjugates ofP . But this means thatN contains all
of the Sylow p-subgroups of G, since they are all conjugate by Theorem 7.4.4 (a).
We conclude that N and G have the same number of Sylow p-subgroups.

4. Prove that if G is a group of order 105, then G has a normal Sylow 5-subgroup
and a normal Sylow 7-subgroup.

Solution: Since 105 D 3 � 5 � 7, the number of Sylow 3-subgroups must be 1 or
7, the number of Sylow 5-subgroups must be 1 or 21, and the number of Sylow
7-subgroups must be 1 or 15. Let P be a Sylow 5-subgroup and let Q be a Sylow
7-subgroup. At least one of these subgroups must be normal, since otherwise we
would have 21 � 4 elements of order 5 and 15 � 6 elements of order 7. Therefore PQ
is a subgroup, and it must be normal since its index is the smallest prime divisor of
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jGj. (See Exercise 16 of Section 7.3.) It follows that we can apply Exercise 3. Since
PQ is normal and contains a Sylow 5-subgroup, we can reduce to the number 35
when considering the number of Sylow 5-subgroups, and thus the number of Sylow
5-subgroups ofG is the same as the number of Sylow 5-subgroups of PQ, which is
1. Similarly, since PQ is normal and contains a Sylow 7-subgroup, the number of
Sylow 7-subgroups of G is the same as the number of Sylow 7-subgroups of PQ,
which is 1.

9. Let p be a prime number. Find all Sylow p-subgroups of the symmetric group
Sp.

Solution: Since jSpj D pŠ, and p is a prime number, the highest power of p
that divides jSpj is p. Therefore the Sylow p-subgroups are precisely the cyclic
subgroups of order p, each generated by a p-cycle. There are .p � 1/Š D pŠ=p
ways to construct a p-cycle .a1; : : : ; ap/. The subgroup generated by a given p-
cycle will contain the identity and the p � 1 powers of the cycle. Two different
such subgroups intersect in the identity, since they are of prime order, so the total
number of subgroups of order p in Sp is .p � 2/Š D .p � 1/Š=.p � 1/.

16. Find the normalizer of h.1; 2; 3; 4; 5/i in A5 and in S5.

Solution: Let h.1; 2; 3; 4; 5/i D H . Note that H is a Sylow 5-subgroup of S5,
that S5 had 6 Sylow 5-subgroups by Exercise 9, and that A5 also has 6 Sylow
5-subgroups by Exercise 3.

First consider H D h.1; 2; 3; 4; 5/i as a subgroup of A5. Since there are 6
subgroups conjugate to H , it follows from Theorem 7.3.4 (b) that ŒA5 W N.H/� D
6, and so jN.H/j D 10. Letting � D .1; 2; 3; 4; 5/, a solution � of the equation
����1 D ��1 certainly belongs to N.H/, since �� i��1 D ��i for i D 1; 2; 3; 4.
As in Exercise 15 (b) of Section 2.3, we can solve to obtain � D .2; 5/.3; 4/, and
note that � 2 A5. Since jN.H/j D 10, we must have N.H/ D h�; �i.

Now consider H as a subgroup of S5. Arguing as above on the number of
Sylow 5-subgroups, we have ŒS5 W N.H/� D 6, and so in this case jN.H/j D 20.
To look for an element in N.H/, consider � D .2; 3; 5; 4/, since .2; 3; 5; 4/2 D
.2; 5/.3; 4/. We have .2; 3; 5; 4/.1; 2; 3; 4; 5/.2; 3; 5; 4/�1 D .1; 3; 5; 2; 4/ D �2,
and so, as before, � 2 N.H/. Since o.�/ D 4, we see that h�; �i D N.H/.

Note: Given the relation �� D ��1� , it follows that the normalizer of H in A5

is isomorphic to D5. Similarly, given the relation �� D �2�, it follows from
Exercise 17 (a) of Section 7.1 that the normalizer of H in S5 is isomorphic to F20.
(This is also shown directly in Exercise 21 of Section 7.2.)

20. Let G be a group of order 340. Prove that G has a normal cyclic subgroup of
order 85 and an abelian subgroup of order 4.

Solution: First, 340 D 22 � 5 � 17. There exists a Sylow 2-subgroup of order 4, and
it must be abelian. No nontrivial divisor of 68 D 22 � 17 is congruent to 1 mod 5,
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so the Sylow 5-subgroup is normal. Similarly, the Sylow 17-subgroup is normal.
These subgroups have trivial intersection, so their product is a direct product, and
hence must be cyclic of order 85 D 5 � 17. The product of two normal subgroups is
again normal, so this produces the required normal cyclic subgroup of order 85.

21. Show that a group of order 108 has a normal subgroup of order 9 or 27.

Solution: Let S be a Sylow 3-subgroup of G. Then ŒG W S � D 4, since jGj D
2233, so we can let G act by multiplication on the cosets of S . This defines a
homomorphism � W G ! S4, so it follows that j�.G/j is a divisor of 12, since it
must be a common divisor of 108 and 24. Thus j ker.�/j � 9, and it follows from
Exercise 2 (a) of Section 7.3 that ker.�/ � S . Thus j ker.�/j must be a divisor of
27, and so either j ker.�/j D 9 or j ker.�/j D 27.

7.5. Finite Abelian Groups

4. Let G be an abelian group, written additively, which has 8 elements of order
3, 18 elements of order 9, and no other elements besides the identity. Find (with
proof) the decomposition of G as a direct sum of cyclic groups.

Solution: We have jGj D 27. First, G is not cyclic since there is no element of
order 27. Since there are elements of order 9, G must have Z9 as a factor. To give
a total of 27 elements, the only possibility is G Š Z9 ˚ Z3.
Check: The elements 3 and 6 have order 3 in Z9, while 1 and 2 have order 3 in
Z3. Thus the following 8 elements have order 3 in the direct product: .3; 0/, .6; 0/,
.3; 1/, .6; 1/, .3; 2/, .6; 2/, .0; 1/, and .0; 2/.

10. Let G and H be finite abelian groups, and assume that they have the following
property. For each positive integer m, G and H have the same number of elements
of order m. Prove that G and H are isomorphic.

Solution: We first reduce the case to that of p-groups. Let p be a prime divisor of
jGj, and let Gp and Hp be the Sylow p-subgroups of G and H , respectively. If we
can show that Gp Š Hp for all p, then it will follow that G Š H , since G and H
are direct products of their Sylow subgroups.

Let jGj D pk for k 2 ZC and suppose that G Š Zp˛1 ˚ Zp˛2 ˚ � � � ˚ Zp˛t ,
where ˛1 � ˛2 � � � � � ˛t and

Pt
iD1 ˛i D k. Consider the number of elements

of order p in G. There are p � 1 such elements in Zp˛ ; in G the elements of order
p have the form .a1; : : : ; at /, where ai D 0 or has order p, and at least one ai is
nonzero. Thus there are pt � 1 elements of order p in G.

Suppose thatH Š Zpˇ1 ˚ Zpˇ2 ˚ � � � ˚ Zpˇs , where ˇ1 � ˇ2 � � � � � ˇs andPt
iD1 ˇi D k. There are ps � 1 elements of order p in H , and therefore s D t .

Now consider pG, in which each element of order pj inG becomes an element
of order pj �1. Then pG and pH have the same number of elements of each
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order, so by induction on the order of the groups we must have pG Š pH . Since
pZp˛ Š Zp˛�1 , we have pG Š Zp˛1�1 ˚ Zp˛2�1 ˚ � � � ˚ Zp˛t �1 , and pH Š
Zpˇ1�1 ˚ Zpˇ2�1 ˚ � � � ˚ Zpˇt �1 . Therefore pG Š pH implies ˛1 � 1 D ˇ1 � 1,
˛2 � 1 D ˇ2 � 1, : : :, ˛t � 1 D ˇt � 1, so ˛1 D ˇ1, ˛2 D ˇ2, : : :, ˛t D ˇt , and
therefore G Š H .

13. LetG andH be finite abelian groups, written additively, and assume thatG˚G
is isomorphic to H ˚H . Prove that G is isomorphic to H .

Solution: Let p be a prime divisor of jGj, and let q D p˛ be the order of a cyclic
component of G. If G has k such components, then G ˚ G has 2k components
of order q. An isomorphism between G ˚ G and H ˚ H must preserve these
components, so it follows that H also has k cyclic components of order q. Since
this is true for every such q, Theorem 7.5.6 gives identical decompositions for G
and H . It follows that G Š H .

7.6. Solvable Groups

2. (a) Find the commutator subgroup D0
n of Dn

Solution: Using the standard description of Dn via generators and relations, con-
sider the cases x D ai or x D aib and y D aj or y D aj b.

Case 1: If x D ai and y D aj , the commutator is trivial.
Case 2: If x D ai and y D aj b, then xyx�1y�1 D aiaj ba�iaj b D

aiajaibaj b D aiajaia�j b2 D a2i , and thus each even power of a is a com-
mutator.

Case 3: If x D aj b and y D ai , we get the inverse of the element in Case 2.
Case 4: If x D aib and y D aj b, then xyx�1y�1 D aibaj baibaj b, and so

we get xyx�1y�1 D aia�j b2aia�j b2 D a2.i�j /, and again we get even powers
of a.

This gives the result we are looking for. If n is odd, then the commutators form
the subgroup hai. If n is even, then the commutators form the subgroup

˝
a2

˛
.

(b) Prove that the dihedral group Dn is solvable for all n.

Solution: By part (a) the commutator subgroup D0
n is either hai or

˝
a2

˛
. In ei-

ther case, the commutator subgroup is abelian, so D00
n D h1i, showing that Dn is

solvable.

7. Example 7.6.3 constructed a composition series S4 � N1 � N2 � N3 � h1i
for S4 in which N2 Š Z2 � Z2. Show that although S4 has subgroups isomorphic
to Z4, there is no composition series for S4 in which N2 Š Z4.

Solution: Any subgroup H of S4 that is isomorphic to Z4 must be generated by
a 4-cycle .a; b; c; d/. By Exercise 15 (b) of Section 2.3 there exists � 2 S4 with
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�.1; 2; 3; 4/��1 D .a; b; c; d/. That is, there exists an inner automorphism of S4

that maps .1; 2; 3; 4/ to .a; b; c; d/. Since any isomorphism will map one composi-
tion series to another, this shows that to answer the question it suffices to show that
the second term in the composition series cannot be h.1; 2; 3; 4/i.

Suppose that we have a composition series S4 � K1 � K2 � K3 � h1i in
which K2 D h.1; 2; 3; 4/i. Then K2 is a normal subgroup of K1, so this means we
should compute the normalizerN.K2/. We know thatK2 is normal in the subgroup
D generated by .1; 2; 3; 4/ and .2; 4/, since D Š D4 (see Table 3.6.1). We could
also show that K2 is a normal subgroup of D by observing that fact K2 has index
2 in D.

Now K2 � D � N.K2/ � S4, and since D has index 3 in S4, it follows
that either D D N.K2/ or N.K2/ D S4. Because .1; 2/.1; 2; 3; 4/.1; 2/ D
.1; 3; 4; 2/ … K2, it follows that K2 is not a normal subgroup of S4, and so
D D N.K2/. This forces K1 D D in our supposed composition series, which
is impossible since D is not a normal subgroup of S4. (In the above calculation,
.1; 2/.1; 2; 3; 4/.1; 2/ D .1; 3; 4; 2/ … D.)

10. Let p and q be primes, not necessarily distinct.

(a) Show that any group of order pq is solvable.

Solution: If p D q, then G has order p2 and is thus abelian. Hence G is solvable.
If p < q, then the number of Sylow q-subgroups divides p and is congruent to 1
modulo q. Thus there is only one Sylow q-subgroup H of G, and so it must be
normal in G. The subgroup H is simple since jH j D q, and G=H is also simple
since jG=H j D p. The sequence G � H � feg shows that G is solvable.

(b) Show that any group of order p2q is solvable.

Solution: If p D q, then there exists a subgroup H of G with jH j D p2 and a
subgroup K of H such that jKj D p. The sequence G � H � K � feg shows
that G is solvable.

If p ¤ q, then we claim that one of the Sylow p-subgroups or Sylow q-
subgroups is normal. If there is more than one Sylow p-subgroup, then there are q
Sylow p-subgroups, and p j .q � 1/. If there is more than one Sylow q-subgroup,
then there are p or p2 Sylow q-subgroups and q j .p � 1/ or q j .p2 � 1/. Since
p j .q � 1/ implies p � q � 1, we cannot have q j .p � 1/. Thus there cannot be p
Sylow q-subgroups and q Sylow p-subgroups. Since p j .q�1/we have p � q�1,
and since q j .pC1/.p�1/, we must have q D pC1. We conclude that p D 2 and
q D 3, and our group is of order 12. The number of Sylow 3-subgroups of a group
of order 12 is 1 or 4. If there are 4 Sylow 3-subgroups, then since any two of these
Sylow 3-subgroups must intersect in the identity element, there are 4 � .3 � 1/ D 8
elements of order 3. The remaining 4 elements form the unique Sylow 2-subgroup,
and so the Sylow 2-subgroup is normal.
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Now consider the sequence G � H � feg, where H is the normal Sylow
subgroup. ThenG=H either has order p2 or order q. In either caseG=H is abelian,
and so G is solvable since both G=H and H are solvable.

(c) Show that any group of order pnq is solvable if p > q.

Solution: Let G have order pnq, with p > q. Since p > q there is only one Sylow
p-subgroup H of G, which must be normal in G. Since jG=H j D q, it is certainly
true that G=H is solvable. Since H is a p-group, it is also solvable, and thus G is
solvable.

12. Prove that any group of order 588 is solvable.

Solution: We have 588 D 22 � 3 � 72. Let S be the Sylow 7-subgroup. It must be
normal, since 1 is the only divisor of 12 that is � 1 .mod 7/. Since jG=S j D 12,
it is solvable by Exercise 10 (b). Furthermore, S is solvable since it is a p-group.
Since both S and G=S are solvable, it follows from Corollary 7.6.8 (b) that G is
solvable.

14. Let G be a finite group and suppose that N is a normal subgroup of G for
which gcd.jN j; ŒG W N �/ D 1. Prove that N is a characteristic subgroup of G.

Solution: Let � be any automorphism of G. Then �.N / is a subgroup of G, with
jN j elements. Since gcd.jN j; ŒG W N �/ D 1, we can apply the result in the Exer-
cise 19 of Section 7.1, which implies that �.N / � N .

7.7. Simple Groups

11. Show that there is no simple group of order 132.

Solution: Since 132 D 22 � 3 � 11, the number of Sylow 2-subgroups is 1, 3, 11, or
33; the number of Sylow 3-subgroups is 1, 4, or 22; and the number of Sylow 11-
subgroups is 1 or 12. We will focus on the Sylow 3 and 11 subgroups. If there are
4 Sylow 3-subgroups, then as in Exercise 10, we can let the group act on them to
produce a homomorphism into S4. Because 132 is not a divisor of 24 D jS4j, this
cannot be one-to-one and therefore has a nontrivial kernel. If there are 22 Sylow
3-subgroups and 12 Sylow 11-subgroups, we get too many elements: 44 of order
3 and 120 of order 11. Thus the group has either 1 Sylow 3-subgroup or 1 Sylow
11-subgroup. We conclude that a group of order 132 has a proper nontrivial normal
subgroup.

17. Let F be a finite field, with jF j D p (a prime number), and let P be the
subgroup of GLn.F / consisting of all upper triangular matrices with 1 in each
entry along the main diagonal. Show that P is a Sylow p-subgroup of GLn.F /.
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Solution: The answer to Exercise 15 gives us

j GLn.F /j D .pn � 1/.pn � p/ � � � .pn � pn�1/ ;

which can be rewritten as

.pn � 1/p.pn�1 � 1/ � � �pn�1.p � 1/ D p1C���C.n�1/m D pn.n�1/=2m ;

where p 6 jm since p 6 j .pi � 1/ for i D 1; : : : ; n.
To construct a matrix in P , we have 1 choice in the first column, p choices in

the second, etc., with pn�1 choices in the last column. Thus jP j D pn.n�1/=2, and
so P is a maximal p-subgroup of GLn.F /, and is therefore a Sylow p-subgroup of
GLn.F /.

20. Let F be any field, and let G be the set of all rational functions over F of the

form f .x/ D ax C b

cx C d
, where a; b; c; d 2 F and ad � bc D 1. Prove that G is a

group under composition of functions, and that G is isomorphic to PSL2.F /.

Solution: Define � W SL2.F / ! G by setting �

��
a b

c d

��
D f .x/ D ax C b

cx C d
,

for each matrix
�
a b

c d

�
2 SL2.F /. Of course

�
a1 b1

c1 d1

� �
a2 b2

c2 d2

�
D

�
a1a2 C b1c2 a1b2 C b1d2

c1a2 C d1c2 c1b2 C d1d2

�
in SL2.F /. In G the operation is given as com-

position of functions, and so if we let fi .x/ D aix C bi

cix C di
, then we have the follow-

ing calculation, which shows that � respects the given operations.

.f1 ı f2/.x/ D f1.f2.x// D
a1

�
a2x C b2

c2x C d2

�
C b1

c1

�
a2x C b2

c2x C d2

�
C d1

D a1 .a2x C b2/C b1 .c2x C d2/

c1 .a2x C b2/C d1 .c2x C d2/

D .a1a2 C b1c2/ x C a1b2 C b1d2

.c1a2 C d1c2/ x C c1b2 C d1d2

It is clear that � is onto. Let A D
�
a b

c d

�
2 ker.�/. Then �.A/ is the

rational function f .x/ D ax C b

cx C d
, which is the identity function x if and only
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if a D d and b D c D 0. It follows from Exercise 7 of Section 3.3 that A 2
Z.GL2.F //. The proof of that exercise uses the centralizers of two matrices in
SLn.F /, so in fact A 2 Z.SL2.F //, and therefore ker.�/ D Z.SL2.F //. We
conclude that G is a group isomorphic to PSL2.F /.
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8 Galois Theory

8.1. The Galois Group of a Polynomial

8. For each of the following fields, find the Galois group of x3 � 2 over the field.

(a) GF.5/

Solution: A search in GF.5/ for roots of x3 � 2 yields one and only one: x D �2.
Thus x3 � 2 factors as x3 � 2 D .x C 2/.x2 � 2x � 1/. The irreducible quadratic
factor will have a splitting field of degree 2 over GF.5/, so by Theorem 8.1.8 the
Galois group of x3 � 2 over GF.5/ is cyclic of order 2.

(b) GF.7/

Solution: In this case, x3 � 2 has no roots in GF.7/, so it is irreducible. If we
adjoin a root ˛ of x3 � 2 to GF.7/, it follows from Corollary 6.6.2 that GF.7/.˛/ is
the splitting field of x3 � 2 over GF.7/. Since the splitting field has degree 3 over
GF.7/, it follows from Theorem 8.1.8 that the Galois group of the polynomial is
cyclic of order 3.

Comment: To show directly that we have found the correct splitting field, division
of x3 � 2 by x � ˛ shows that x3 � 2 D .x � ˛/.x2 C ˛x C ˛2/. The quadratic
formula then shows that 2˛ and 4˛ are the roots of x2 C ˛x C ˛2, and so x3 � 2
splits over GF.7/.˛/ as x3 � 2 D .x � ˛/.x � 2˛/.x � 4˛/.

(c) GF.11/

Solution: A search in GF.11/ for roots of x3 � 2 yields one and only one: x D 7.
Then x3 � 2 can be factored as x3 � 2 D .x � 7/.x2 C 7x C 5/, and the second
factor must be irreducible. The splitting field has degree 2 over GF.11/, and can be
described as GF.11/Œx�=

˝
x2 C 7x C 5

˛
. Thus by Theorem 8.1.8 the Galois group

of x3 � 2 over GF.11/ is cyclic of order 2, as in part (a).

9. Find the Galois group of x4 � 1 over the field GF.7/.

Solution: We first need to find the splitting field of x4 � 1 over GF.7/. We have
x4 � 1 D .x � 1/.x C 1/.x2 C 1/. A quick check of ˙2 and ˙3 shows that
they are not roots of x2 C 1 over GF.7/, so x2 C 1 is irreducible over GF.7/. To
obtain the splitting field we must adjoin a root of x2 C 1, so we get a splitting field
GF.7/Œx�=

˝
x2 C 1

˛
of degree 2 over GF.7/.

It follows from Theorem 8.1.8 that the Galois group of x4 � 1 over GF.7/ is
cyclic of order 2.
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8.2. Multiplicity of Roots

4. Find the Galois group of x6 � 1 over GF.7/.

Solution: The Galois group is trivial because x6 � 1 already splits over GF.7/. In
fact, x6 � 1 D .x � 1/.x � 2/.x � 3/.x � 4/.x � 5/.x � 6/.
Comment: By Theorem 6.5.2, GF.7/ is the splitting field of x7 � x D x.x6 � 1/.

8. Find a primitive element for the extension Q.
p
2; i/ over Q.

Solution: The solution of Exercise 2 (c) of Section 6.4 shows that Q.
p
2; i/ D Q.˛/

for ˛ D
p

2
2

C
p

2
2
i .

Alternate solution: If we follow the proof of Theorem 8.2.8, we have u D u1 Dp
2, u2 D �p

2, v D v1 D i , and v2 D �i . The proof shows the existence of
an element a with u C av ¤ ui C avj for all i and all j ¤ 1. To find such an
element we need

p
2 C ai ¤ p

2 C a.�i/ and
p
2 C ai ¤ �p

2 C a.�i/. The
easiest solution is to take a D 1, and so we consider the element ˛ D p

2C i . We
have Q � Q.˛/ � Q.

p
2; i/, and since ˛�1 2 Q.˛/, we must have .

p
2C i/�1 D

.
p
2� i/=3 2 Q.˛/. But then

p
2� i belongs, and it follows immediately that

p
2

and i both belong to Q.˛/, which gives us the desired equality Q.˛/ D Q.
p
2; i/.

10. Let f .x/ 2 QŒx� be irreducible over Q, and let F be the splitting field of f .x/
in C. If ŒF W Q� is odd, prove that all of the roots of f .x/ are real.

Solution: We can assume without loss of generality that f .x/ is monic, so let
f .x/ D xn C an�1x

n�1 C : : : a1x C a0, where ai 2 Q for 0 � i < n. Define � W
F ! C by setting �.z/ D z, for all z 2 F , where z denotes the complex conjugate
of z. For z1; z2 2 F we have �.z1 C z2/ D z1Cz2 D z1 Cz2 D �.z1/C�.z2/
and �.z1z2/ D z1z2 D z1 z2 D �.z1/�.z2/, so � is a ring homomorphism since
�.1/ D 1. Since ker.�/ is a proper ideal of the field F it must be .0/, and thus � is
one-to-one.

Since f .x/ has real coefficients, we have �.ai / D ai for 0 � i < n. If r is
a root of f .x/, then f .r/ D �.f .r// D �.0/ D 0, so r is also a root of f .x/.
Since F is the splitting field for f .x/, it is the smallest subfield of C that contains
all roots of f .x/. We conclude that �.F / D F , and so � 2 Gal.F=Q/.

Since Q has characteristic zero, Theorem 8.2.6 implies that f .x/ has no re-
peated roots, and then Theorem 8.1.6 shows that j Gal.F=Q/j D ŒF W Q�, so
Gal.F=Q/ has odd order. Since j Gal.F=Q/j is odd and �2 D 1F , it follows that �
must be the identity mapping. We conclude that F � R, and so every root of f .x/
must be real.
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8.3. The Fundamental Theorem of Galois Theory

4. Let F D Q.
p
2;

3
p
2/. Find ŒF W Q� and prove that F is not normal over Q.

Solution: The element 3
p
2 has minimal polynomial x3 � 2 over Q. Since

p
2 has

minimal polynomial x2 � 2 over Q, we see that Q.
p
2/ cannot be contained in

Q. 3
p
2/ since the first extension has degree 2 over Q while the second has degree 3

over Q. It follows that ŒF W Q� D 6.
If F were a normal extension of Q, then since it contains one root 3

p
2 of the

irreducible polynomial x3 �2 it would have to contain all of the roots. But F � R,
while the other two roots of x3 �2 are non-real, so F cannot be a normal extension
of Q.

7. Find the order of the Galois group of x5 � 2 over Q.

Solution: Let G be the Galois group in question, and let � be a primitive 5th root
of unity. Then the roots of x5 � 2 are ˛ D 5

p
2 and ˛�j , for 1 � j � 4. The

splitting field over Q is F D Q. 5
p
2; �/. Since p.x/ D x5 � 2 is irreducible over

Q by Eisenstein’s criterion, it is the minimal polynomial of 5
p
2. The element � is

a root of x5 � 1 D .x � 1/.x4 C x3 C x2 C x C 1/, so its minimal polynomial is
q.x/ D x4 C x3 C x2 C x C 1. Thus ŒF W Q� � 20, but since the degree must be
divisible by 5 and 4, it follows that ŒF W Q� D 20, and therefore jGj D 20.

Note: By Section 8.6 we will have the tools to actually compute the Galois group,
which is shown in Example 8.6.2 to be F20.

9. Let F be the splitting field over K of a separable polynomial. Prove that if
Gal.F=K/ is cyclic, then for each divisor d of ŒF W K� there is exactly one field E
with K � E � F and ŒE W K� D d .

Solution: By assumption we are in the situation of the fundamental theorem of
Galois theory, so that there is a one-to-one order-reversing correspondence between
subfields of F that contain K and subgroups of G D Gal.F=K/. Because G is
cyclic of order ŒF W K�, there is a one-to-one correspondence between subgroups
of G and divisors of ŒF W K�. Thus for each divisor d of ŒF W K� there is a unique
subgroup H of index d . By the fundamental theorem, ŒFH W K� D ŒG W H �, and
so E D FH is the unique subfield with ŒE W K� D d .

8.4. Solvability by Radicals

1. Let f .x/ be irreducible over Q, and let F be its splitting field over Q. Show that
if Gal.F=Q/ is abelian, then F D Q.u/ for all roots u of f .x/.
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Solution: Since F has characteristic zero, we are in the situation of the fundamental
theorem of Galois theory. Because Gal.F=Q/ is abelian, every intermediate exten-
sion between Q and F must be normal. Therefore if we adjoin any root u of f .x/,
the extension Q.u/ must contain all other roots of f .x/, since it is irreducible over
Q. Thus Q.u/ is a splitting field for f .x/, so Q.u/ D F .

2. Show that x5 � 4x C 2 is irreducible over Q, and is not solvable by radicals.

Solution: The polynomial p.x/ D x5 � 4x C 2 is irreducible over Q, since it
satisfies Eisenstein’s criterion for the prime 2. Since p.�2/ D �22, p.�1/ D 5,
p.0/ D 2 p.1/ D �1, and p.2/ D 26, we see that p.x/ has a real root between
�2 and �1, another between 0 and 1, and a third between 1 and 2. The derivative
p0.x/ D 5x4 � 4 has two real roots, so p.x/ has one relative maximum and one
relative minimum, and thus it must have exactly three real roots. It follows as in
the proof of Theorem 8.4.8 that the Galois group of p.x/ over Q is S5, and so it is
not solvable.

8. Show that x4 � x3 C x2 � x C 1 is irreducible over Q, and use it to find the
Galois group of x10 � 1 over Q.

Solution: We can construct the splitting field F of x10 � 1 over Q by adjoining a
primitive 10th root of unity to Q. We have x10 � 1 D .x5 � 1/.x5 C 1/ D
.x � 1/.x4 C x3 C x2 C xC 1/.xC 1/.x4 � x3 C x2 � xC 1/. Substituting x � 1
in the last factor yields .x � 1/4 � .x � 1/3 C .x � 1/2 � .x � 1/C 1 D
.x4 �4x3 C6x2 �4xC1/� .x3 �3x2 C3x�1/C .x2 �2xC1/� .x�1/C1 D
x4 �5x3 C10x2 �10xC5. This polynomial satisfies Eisenstein’s criterion for the
prime 5, which implies that the factor x4 � x3 C x2 � x C 1 is irreducible over Q.

The roots of this factor are the primitive 10th roots of unity, so it follows that
ŒF W Q� D '.10/ D 4. The proof of Theorem 8.4.2 shows that Gal.F=Q/ Š Z�

10,
and so the Galois group is cyclic of order 4.

8.5. Cyclotomic Polynomials

12. Calculate ˆ105.x/.

Solution: We first note that '.105/D48. Sinceˆ105.x/D
Q

nj105.x
n �1/�.105=n/

by Exercise 9, we have ˆ105.x/ D .x3 � 1/.x5 � 1/.x7 � 1/.x105 � 1/
.x � 1/.x15 � 1/.x21 � 1/.x35 � 1/ . By Ex-

ercise 11, because of the symmetry involved and the fact that deg.ˆ105.x// D 48,
we only need to compute the first 24 coefficients of ˆ105.x/, so we can work with
powers of x modulo x25.
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Note that .x15 � 1/.x15 C 1/ � �1 .mod x25/, .x21 � 1/.x21 C 1/ �
�1 .mod x25/, x35 � 1 � �1 .mod x25/, and x105 � 1 � �1 .mod x25/,
Thus after making these substitutions in our formula for ˆ105.x/, we have

ˆ105.x/ � .x2 C x C 1/.x5 � 1/.x7 � 1/.x15 C 1/.x21 C 1/ .mod x25/

� .1C x C x2/.1�x5�x7Cx12Cx15�x20Cx21�x22/ .mod x25/

� .1CxCx2�x5�x6�2x7�x8�x9Cx12Cx13Cx14

Cx15Cx16Cx17�x20�x22�x24�x24/ .mod x25/ ;

and so we finally obtain ˆ105.x/D
x48Cx47Cx46�x43�x42�2x41�x40�x39Cx36Cx35Cx34Cx33Cx32Cx31�x28�x26

�x24�x22�x20Cx17Cx16Cx15Cx14Cx13Cx12�x9�x8�2x7�x6�x5Cx2CxC1.

Remark: All of the polynomials ˆn.x/ that we have computed up to now have
only the coefficients 0, 1, or �1, and so one might have conjectured that this was
the case for all ˆn.x/. However ˆ105.x/ has the coefficient �2 for the degree 7
and degree 41 terms.

8.6. Computing Galois Groups

5. Show that the following is a complete list of the transitive subgroups of S4: (i)
S4; (ii) A4; (iii) the Sylow 2-subgroups (isomorphic to D4); (iv) the cyclic sub-
groups of order 4; (v) the subgroup V Df.1/; .1; 3/.2; 4/; .1; 2/.3; 4/; .1; 4/.2; 3/g.

Solution: Let H be a subgroup of S4 that acts transitively on S D f1; 2; 3; 4g. This
is equivalent to saying that the orbit of each x 2 S , under the action of H , must
be all of S , and so ŒH W Hx� D jHxj D jS j D 4 for all x 2 S . Therefore jH j is
divisible by 4, so we can only have jH j D 24, 12, 8, or 4.

It is clear that the subgroups listed in (i), (ii), (iv), and (v) are transitive. The
only subgroup of order 12 is A4, and any subgroup of order 8 is, of course, a Sylow
2-subgroup. We know that D4 is isomorphic to a subgroup of S4, so it follows
from the Sylow theorems that every subgroup of order 8 is isomorphic to D4 and
therefore is transitive since it contains a 4-cycle.

We must now eliminate the subgroups of order 4 that are not on our list. Any
subgroup of order 4 is contained in a Sylow 2-subgroup, so we only need to con-
sider subgroups isomorphic to a subgroup of D4. The three subgroups of D4 of
order 4 are given in Example 3.6.5. Letting a D .1; 2; 3; 4/ and b D .2; 4/, these
subgroups are H1 D fe; a2; b; a2bg D f.1/; .1; 3/.2; 4/; .2; 4/; .1; 3/g, H2 D hai,
and H3 D fe; a2; ab; a3bg D V . Since H2 is cyclic and H3 D V , these are on
our list. Since H1 is not transitive, it follows that any subgroup of S4 isomorphic
to H1 is not transitive.

Thus our list of transitive subgroups of S4 is complete.
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8. Show that the following is a complete list of the transitive subgroups of S5:
(i) S5; (ii) A5; (iii) any cyclic subgroup of order 5; (iv) the normalizer in A5 of
any cyclic subgroup of order 5 (isomorphic to the dihedral group D5); (v) the
normalizer in S5 of any cyclic subgroup of order 5 (isomorphic to the Frobenius
group F20).

Solution: Let H be a subgroup of S5 that acts transitively on S D f1; 2; 3; 4; 5g.
This is equivalent to saying that the orbit of each x 2 S , under the action of H ,
must be all of S , and so ŒH W Hx� D jHxj D jS j D 5 for all x 2 S . Therefore jH j
is divisible by 5, and so H contains a cycle of length 5 by Cauchy’s theorem. This
cycle generates a Sylow 5-subgroup of H . By the Sylow theorems, the number of
Sylow 5-subgroups in H is � 1 .mod 5/, so this number must be either 6 or 1. We
consider these two cases.

Case 1. Suppose that H contains 6 Sylow 5-subgroups. Then H contains all 24
cycles of length 5, and so jH \ A5j � 25. Since A5 is simple it cannot contain a
subgroup of order 30, so in this case H \ A5 D A5, and thus either H D A5 or
H D S5.

Case 2. Suppose thatH contains only 1 Sylow 5-subgroupP , which is then normal
in H . If H � A5, then H contained in the normalizer of P in A5, which is
shown in Exercise 16 of Section 7.4 to be isomorphic to D5. (Remember that P is
generated by a 5-cyclic.) Therefore H Š Z5 or H Š D5.

If H is not contained in A5, then H must be contained in the normalizer of
P in S5. As shown in Exercise 16 of Section 7.4, this normalizer is isomorphic
to F20. The only possibility for a subgroup of F20 isomorphic to H is one of the
subgroups isomorphic to Z5, D5, or F20 itself.

Thus our list of transitive subgroups of S5 is complete.
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9 UNIQUE FACTORIZATION

9.1. Unique Factorization

11. Show that ZŒx� is not a principal ideal domain.

Solution: The factor ring ZŒx�= hxi is isomorphic to Z, so hxi is a nonzero prime
ideal that is not maximal, since Z is an integral domain that is not a field. This
contradicts Theorem 5.3.10.

9.2. Unique Factorization Domains

8. A commutative ring R is said to be a Noetherian ring if every ideal of R has a
finite set of generators. Prove that if R is a commutative ring, then R is Noetherian
if and only if for any ascending chain of ideals I1 � I2 � � � � there exists a positive
integer n such that Ik D In for all k > n.

Solution: First assume that R is a Noetherian ring, and let I1 � I2 � � � � be an
ascending chain of ideals of R. Let I be the union of the chain, so that I D
fx 2 R j x 2 Ik for some kg. If x; y 2 I , then there exist integers k;m such that
x 2 Ik and y 2 Im. Assume without loss of generality that k � m. Then Ik � Im,
so x 2 Im, and therefore x C y 2 Im since Im is an ideal of R. Thus we have
shown that xCy 2 I . For any r 2 R we have rx 2 Ik , so rx 2 I . This shows that
the union I is an ideal, so it has a finite set of generators. Each of these generators
belongs to Ik for some k, so if we let n be the maximum of these indices, then
because the ideals Ik form a chain it follows that all of the generators of I belong
to In. Therefore I � In, so we must have In D InC1 D InC2 D : : :.

Conversely, assume that the given condition holds for ascending chains of ide-
als ofR, and let I be any ideal ofR. Let x1 be a nonzero element of I . If I D hx1i,
then I has a finite set of generators, and we are done. If not, let I1 D hx1i, Then
there exists x2 2 I � I1, and so we consider I2 D fa1x1 C a2x2 j a1; a2 2 Rg.
The set I2 is an ideal, with I1 � I2 � I . If I2 D I , then I has two genera-
tors, and we are done. If not, we can choose x3 2 I � I2, and then we consider
I3 D fa1x1 C a2x2 C a3x3 j a1; a2; a3 2 Rg. Because of the condition on as-
cending chains, this procedure cannot produce an infinite ascending chain of ideals,
each properly contained in the next, and so we conclude that for some n we have
In D I . This shows that I has n generators, completing the proof.

9. Let R be a commutative Noetherian ring. This exercise provides an outline of
the steps in a proof of the Hilbert basis theorem, which states that the polynomial
ring RŒx� is a Noetherian ring.
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(a) Let I be any ideal of RŒx�, and let Ik be the set of all r 2 R such that r D 0 or
r occurs as the leading coefficient of a polynomial of degree k in I . Prove that Ik

is an ideal of R.

Solution: If r; s 2 Ik , and either r D 0 or s D 0, then it is clear that r C s 2 Ik .
If r ¤ 0 and s ¤ 0, then there exist polynomials p.x/ and q.x/, each of degree
k, such that r is the leading coefficient of p.x/, and s is the leading coefficient of
q.x/. If r C s D 0, then r C s 2 Ik by definition, and if not, then r C s is the
leading coefficient of p.x/C q.x/, which has degree k and belongs to I . If a 2 R,
then either ar D 0 2 Ik , or ar is the leading coefficient of ap.x/, which belongs
to I and has degree k.

(b) For the ideals Ik in part (a), prove that there exists an integer n such that In D
InC1 D � � � .

Solution: Since Ik � IkC1 � � � � is an ascending chain of left ideals in R, this
follows from Exercise 8.

(c) By assumption, each left ideal Ik is finitely generated (for k � n), and we
can assume that it has m.k/ generators. Each generator of Ik is the leading coef-
ficient of a polynomial of degree k, so we let fpjk.x/gm.k/

j D1 be the corresponding

polynomials. Prove that B D [n
kD1

fpjk.x/gm.k/
j D1 is a set of generators for I .

Solution: If the set B is not a generating set, then among the polynomials that cannot
be expressed as linear combinations of polynomials in B there exists one of minimal
degree, say f .x/ D axk C � � � . If k < n, then a 2 Ik , and so a D Pm.k/

j D1 rjajk for

the generators fajkgm.k/
j D1 of Ik . Then f .x/ � Pm.k/

j D1 rjpjk.x/ has lower degree,
and still cannot be expressed as a linear combination of elements of B. This is a
contradiction. If k � n, then we have a 2 In, and we can repeat the argument
using the generators of In

Comment: We present another proof that if R is a commutative Noetherian ring,
then RŒx� is Noetherian. It was given by Sarges, in J. reine angew. Math. 283/284
(1976), 436-437, and may be the shortest proof known.

Proof : We show that if RŒx� fails to be Noetherian, then so does R. Let I be an
ideal of RŒx� that is not finitely generated, and let f1 be a polynomial of minimal
degree in I . If such polynomials fi have already been chosen, for 1 � i < k�1, let
fk be a polynomial of minimal degree in I such that fk does not belong to the ideal
hf1; : : : ; fk�1i. For 1 � i < k, let n.i/ be the degree fi , and let ai 2 R be the
leading coefficient of fi . By the choice of fi we have n.1/ � n.2/ � � � � . We will
show that the ideals ha1i � ha1; a2i � � � � form a strictly ascending chain of ideals
that does not become stationary. Suppose that ha1; : : : ; ak�1i D ha1; : : : ; aki.
Then ak 2 ha1; : : : ; ak�1i, and so there exist ri 2 R with ak D Pk�1

iD1 riai .
Therefore the polynomial g defined by g D fk � Pk�1

iD1 rix
n.k/�n.i/fi belongs
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to I , but not to the ideal hf1; : : : ; fk�1i, and has lower degree than fk . This
contradicts the choice of fk .

9.3. Some Diophantine Equations

5. This exercise outlines a proof that the equation x4 C y4 D z2 has no solution in
ZC.

(a) Suppose that there is a positive triple x; y; z such that x4 Cy4 D z2. Show that
we may assume that .x; y/ D 1, and that .x2; y2; z/ D 1.

Solution: If .x; y/ D d , then x D du and y D dv for u; v 2 Z, and so d4u4 C
d4v4 D z2, where .u; v/ D 1. Now d4 jz2, and so d2 jz. Thus z D d2w, for
some w 2 Z, and hence u4 C v4 D w2. Clearly .u2; v2; w/ D 1.

(b) Show that there exists a least positive integer z such that x4 C y4 D z2, with
.x; y/ D 1, x > 0, and y > 0.

Solution: Apply the well-ordering principle.

(c) Show that x 6� y .mod 2/.

Solution: Since .x; y/ D 1, the numbers x and y cannot both be even. If both x
and y are odd, then z2 � 2 .mod 4/, a contradiction.

(d) Without loss of generality, suppose that x is even and y is odd. Show that there
exist positive integers r < s, .r; s/ D 1, r 6� s .mod 2/ such that x2 D 2sr ,
y2 D s2 � r2, and z D s2 C r2.

Solution: Apply Exercise 30 of Section 1.2 to get x2 D 2sr , y2 D s2 � r2,
z D s2 C r2, where 0 < r < s and .r; s/ D 1. If r � s .mod 2/, then y would be
even, a contradiction.

(e) Show that r is even, and s is odd.

Solution: If s were even, then r would be odd, and so y2 � �1 .mod 4/, a
contradiction.

(f) Say that r D 2t . Show that .t; s/ D 1, and that both t and s are squares.

Solution: Since .2t; s/ D 1, we have .t; s/ D 1. Since x2 D 2sr D 4st and
.t; s/ D 1, we have that s and t are squares.

(g) Show that there exist integers m; n such that 0 < m < n, .m; n/ D 1, and
t D mn, y D n2 �m2, and s D n2 Cm2.

Solution: Since t is a square, there exists a positive integer h such that t D h2.
From y2 Cr2 D s2 we get y2 C.2h2/2 D s2. Applying Exercise 30 of Section 1.2
again, there exist integersm; nwith 0 < m < n, .m; n/ D 1, such that 2h2 D 2mn,
y D n2 �m2, and s D m2 Cn2. Hence t D mn, y D n2 �m2, and s D n2 Cm2.
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(h) Show that both m and n are squares.

Solution: This follows since h2 D mn and .m; n/ D 1.

(i) Say m D a2 and n D b2. Show that there exists k 2 Z such that a4 C b4 D k2,
and obtain a contradiction to the choice of z in part (b) of this exercise.

Solution: Since s is a square, there exists k 2 Z such that x D k2 D m2 C n2 D
a4 C b4, and since s > r and r > 0 is even, we have s > 1, and so k > 1. Thus
0 < k < k2 D s < s2 C r2 D z. Therefore we have a solution .a2; b2; k/ to
x4 C y4 D z2, which contradicts the choice of z.

6. (a) Show that the equation x4 C y4 D z4 has no integer solution with xyz ¤ 0.

Solution: If .r; s; t/ is a solution to x4 C y4 D z4 with rst ¤ 0, then .r; s; t2/ is a
solution to x4 C y4 D z2 with rst2 ¤ 0, and this contradicts Exercise 5.

(b) In order to prove Fermat’s last theorem, show this it suffices to prove that for any
odd prime p, the equation xp C yp D zp has no integer solution with xyz ¤ 0.

Solution: Fermat’s last theorem states that xn C yn D zn has no solution with
xyz ¤ 0 when n � 3. Now if p jn, where p is an odd prime, then n D mp for
some m, and .xm; ym; zm/ is a solution to xp C yp D zp whenever .x; y; z/ is a
solution to xn C yn D zn. If n has no odd prime divisor, then since n � 3 we have
4 jn, so n D 4k and .xk; yk; zk/ is a solution to x4 C y4 D z4 whenever .x; y; z/
is a solution to xn C yn D zn.
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10 GROUPS: SELECTED TOPICS

10.1. Nilpotent Groups

5. (a) Prove that Dn is solvable for all n.

Solution: Using the usual description Dn D faibj j 0 � i < n; 0 � j < 2g, with
ba D a�1b, we know that hai is a normal subgroup of index 2, and since the factor
group is also abelian, we have produced a series of normal subgroups of Dn that
shows that it is solvable.

(b) Prove that Dn is nilpotent if and only if n is a power of 2.

Solution: It was shown in Exercise 22 of Section 3.6 that if n is odd, then the center
of Dn is trivial, and if n D 2m is even, then the center of Dn is fe; amg. We will
show that Dn is nilpotent if and only if n is a power of 2, with the help of the
following lemma.

Lemma: If n D 2m is even, then Dn= hami Š Dm.
Proof : Let Dm D fcid j j 0 � i < m; 0 � j < 2g, and define � W Dn ! Dm by
setting �.aibj / D cid j , for 0 � i < n and 0 � j < 2. It is clear that � defines a
group homomorphism from Dn onto Dm, and that ker.�/ D
fai j i � 0 .mod m/g D hami. �

We now show thatDn is nilpotent if and only if n is a power of 2. First suppose
that n D 2k . Then jDnj D 2kC1, so Dn is a 2-group and therefore nilpotent.

Conversely, suppose that n D 2km, where m is an odd integer. Then in the
ascending central series Zi .Dn/, the first term is the center ha2k�1mi. To calculate
the next term, we note that the image of ha2k�2mi in Dn=ha2k�1mi is its center, so
Z2.Dn/ D ha2k�2mi, and Dn=Z2.Dn/ Š D2k�2m. Continuing in this fashion,
we arrive at Zk.Dn/, with Dn=Zk.Dn/ Š Dm. Since the center of this factor
group is trivial, the series terminates, and therefore Dn is not nilpotent.

6. Use Theorem 10.1.7 to prove that any factor group of a finite nilpotent group is
again nilpotent.

Solution: Let N be a normal subgroup of G, and suppose that H=N is a maximal
subgroup ofG=N . The correspondence between subgroups ofG=N and subgroups
of G that contain N shows that H is a maximal subgroup of G, and so it is normal
in G by Theorem 10.1.7. It follows that H=N is a normal subgroup of G=N , and
thus Theorem 10.1.7 implies that G=N is nilpotent.
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10.2. Internal Semidirect Products of Groups
5. Let G be the subgroup of GL3.GF.2// generated by the following matrices:2
4 1 0 0

1 1 0

0 0 1

3
5,

2
4 1 0 0

0 1 0

1 0 1

3
5,

2
4 1 0 0

0 0 1

0 1 0

3
5.

(a) List the elements of G.

Solution: The following matrices form the smallest subgroup N of GL3.GF.2//
containing the first two of the given matrices:2

4 1 0 0

0 1 0

0 0 1

3
5,

2
4 1 0 0

1 1 0

0 0 1

3
5,

2
4 1 0 0

0 1 0

1 0 1

3
5,

2
4 1 0 0

1 1 0

1 0 1

3
5.

Note that each nonidentity element has order two.
Multiplying these matrices on the left by the third matrix interchanges the bot-

tom two rows; multiplying on the right by the third matrix interchanges the two
right hand columns. Either calculation produces the four additional matrices that
make up the required subgroup G:2

4 1 0 0

0 0 1

0 1 0

3
5,

2
4 1 0 0

0 0 1

1 1 0

3
5,

2
4 1 0 0

1 0 1

0 1 0

3
5,

2
4 1 0 0

1 0 1

1 1 0

3
5.

(b) Find elements a; b 2 G with o.a/ D 4, o.b/ D 2, ba D a3b, and conclude
that G is isomorphic to D4. Identify the subgroups that show that it is an internal
semidirect product of a cyclic subgroup of order 4 by a subgroup of order 2.

Solution: We need to find an element of order 4, and setting a D
2
4 1 0 0

1 0 1

0 1 0

3
5

provides one, with a2 D
2
4 1 0 0

1 1 0

1 0 1

3
5 and a3 D

2
4 1 0 0

0 0 1

1 1 0

3
5. We can let b be

any element not in this subgroup, say b D
2
4 1 0 0

0 0 1

0 1 0

3
5. Then

ba D
2
4 1 0 0

0 0 1

0 1 0

3
5

2
4 1 0 0

1 0 1

0 1 0

3
5 D

2
4 1 0 0

0 1 0

1 0 1

3
5 and

a3b D
2
4 1 0 0

0 0 1

1 1 0

3
5

2
4 1 0 0

0 0 1

0 1 0

3
5 D

2
4 1 0 0

0 1 0

1 0 1

3
5,

showing that G Š D4, and it is the internal semidirect product of the normal
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subgroup hai D
8<
:

2
4 1 0 0

0 1 0

0 0 1

3
5 ;

2
4 1 0 0

1 0 1

0 1 0

3
5 ;

2
4 1 0 0

1 1 0

1 0 1

3
5 ;

2
4 1 0 0

0 0 1

1 1 0

3
5

9=
;

by the subgroup hbi D
8<
:

2
4 1 0 0

0 1 0

0 0 1

3
5 ;

2
4 1 0 0

0 0 1

0 1 0

3
5

9=
;.

(c) Show that G is the internal semidirect product of a normal subgroup N isomor-
phic to the Klein four-group V by a subgroup of order 2.

Solution: Let N D8<
:

2
4 1 0 0

0 1 0

0 0 1

3
5 ;

2
4 1 0 0

1 1 0

0 0 1

3
5 ;

2
4 1 0 0

0 1 0

1 0 1

3
5 ;

2
4 1 0 0

1 1 0

1 0 1

3
5

9=
;, the elements of

the form

2
4 1 0 0

a 1 0

b 0 1

3
5, and let KD

8<
:

2
4 1 0 0

0 1 0

0 0 1

3
5 ;

2
4 1 0 0

0 0 1

0 1 0

3
5

9=
;. Then

N\K D fI g, and so a counting argument shows thatNK D G. SinceN has index
2 in G, it is normal, and thus G D N Ì K. A short calculation shows that each
element in N has order 2, and therefore N is isomorphic to the Klein four-group.

7. Let n D 2m, where m is an odd integer � 3. Show that the dihedral group
Dn is the internal semidirect product of a cyclic group of order m by a subgroup
isomorphic to the Klein four-group.

Solution: Let Dn D faibj j 0 � i < n; 0 � j < 2g, where o.a/ D n, o.b/ D 2,
and ba D a�1b. Let N D ˝

a2
˛

and K D fe; am; b; ambg. It is easily checked that
K is a subgroup, and since each nontrivial element has order 2, it is isomorphic to
the Klein four-group. If ai 2 N , where i is even, then baib�1 D a�i 2 N , so N
is a normal subgroup. Since every power of a2 is even, we have N \K D feg, and
then it is clear that NK D Dn, completing the proof.

8. Letm; n be positive integers. Show that the direct product Zm�Dn is the internal
semidirect product of a normal subgroup isomorpic to Zm ˚ Zn by a subgroup of
order 2.

Solution: Let Dn D faibj j 0 � i < n; 0 � j < 2g, where o.a/ D n, o.b/ D 2,
and ba D a�1b. Let N D f.x; ai / j x 2 Zm; 0 � i < ng and let K D h.0; b/i.
Then N is a subgroup of Zm �Dn by Exercise 11 of Section 3.3, it is normal since
it has index 2, and it is clear that NK D Zm �Dn. Thus Zm �Dn D N ÌK, and
it is easy to check that N Š Zm ˚ Zn.
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10.3. External Semidirect Products of Groups

6. Let C4 be the cyclic group of order 4, written multiplicatively, and let ˛ be the
only nontrivial group homomorphism from C4 into Aut.Z3/ Š C2. Find elements
a of order 6 and b of order 4 with b2 D a3 and ba D a�1b such that Z3 Ì˛ C4 can
be described as faibj j 0 � i < 6; 0 � j < 2g.

Solution: We will use the given subgroups C4 D f˙1;˙ig and C2 D f˙1g of C�.
Since Aut.Z3/ Š C2, the only nontrivial homomorphism ˛ W C4 ! C2 is defined
by ˛.i/ D �1, and then ˛.�1/ D 1 and ˛.�i/ D �1. Thus ˛�1 is the identity
automorphism, while ˛i and ˛�i represent a change of sign.

Let a D .1;�1/ and b D .0; i/ in Z3 Ì˛ C4. We have
a2 D .1;�1/ � .1;�1/ D .1C ˛�1.1/; .�1/.�1// D .1C 1; 1/ D .2; 1/,
a3 D .1;�1/ � .2; 1/ D .1C ˛�1.2/; .�1/.1// D .1C 2;�1/ D .0;�1/,
a4 D .1;�1/ � .0;�1/ D .1C ˛�1.0/; .�1/.�1// D .1C 0; 1/ D .1; 1/,
a5 D .1;�1/ � .1; 1/ D .1C ˛�1.1/; .�1/.1// D .1C 1;�1/ D .2;�1/,
a6 D .1;�1/ � .2;�1/ D .1C ˛�1.2/; .�1/.�1// D .1C 2; 1/ D .0; 1/,
and so o.a/ D 6. In general, .x; y/ � .0; z/ D .x C ˛y.0/; yz/ D .x; yz/, so
b2 D .0;�1/, b3 D .0;�i/, and b4 D .0; 1/, and thus b has order 4. From the
above list of powers of a, it is clear that each element of Z3 Ì˛ C4 has the form ai

or aib, for 0 � i < 6.
From the above calculations, b2 D .0;�1/ D a3, and ba D .0; i/ � .1;�1/ D

.0 C ˛i .1/; .i/.�1// D .0 � 1;�i/ D .2;�i/ while a�1b D a5b D .2;�1/ �

.0; i/ D .2;�i/, and so ba D a�1b.

Comment: Since b2 D a3, we have a2b2 D a5, a4b2 D a, b3 D a3b, a2b3 D
a5b, and a4b3 D ab. Thus can also write
Z3 Ì˛ C4 D fa2ibj j 0 � i < 3; 0 � j < 4g.

7. Let V be the Klein four-group, written multiplicatively, and let ˛ WV !Aut.Z3/
be any nontrivial group homomorphism. Show that Z3 Ì˛ V Š D6.

Solution: By Example 10.3.3 we are free to consider any linear action of V on a
cyclic group of order 3, written additively. Since each nontrivial element of Z�

12
has order 2, it is isomorphic to V , and since Z�

12 D Aut.Z12/, it acts linearly on
Z12. As in Example 10.3.4, we will make use of a subgroup of the holomorph H12

of Z12.
We can identity Z�

12 D f˙1;˙5g with V , and we can identity the cyclic sub-
group N D f0; 4; 8g � Z12 with Z3. Since this subgroup is also an ideal of the
ring Z12, each element of Aut.Z12/mapsN toN . We conclude that multiplication
in Z12 defines a linear action of Z�

12 on N .
In the semidirect product N Ì˛ Z�

12, let a D .4;�5/ and let b D .0;�1/. Then
.0;�1/ � .0;�1/ D .0 C .�1/.0/; .�1/.�1// D .0; 1/, and so b has order 2. We
also have
a2 D .4;�5/ � .4;�5/ D .4C .�5/.4/; .�5/.�5// D .8; 1/,
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a3 D .4;�5/ � .8; 1/ D .4C .�5/.8/; .�5/.1// D .0;�5/,
a4 D .4;�5/ � .0;�5/ D .4C .�5/.0/; .�5/.�5// D .4; 1/,
a5 D .4;�5/ � .4; 1/ D .4C .�5/.4/; .�5/.1// D .8;�5/,
a6 D .4;�5/ � .8;�5/ D .4C .�5/.8/; .�5/.�5// D .0; 1/,
and so o.a/ D 6. Since .x; y/.0;�1/ D .x;�y/, it follows easily from the above
list of powers of a that each element of N Ì˛ Z�

12 has the form ai or aib, for
0 � i < 6. Furthermore, ba D .0;�1/ � .4;�5/ D .0 C .�1/.4/; .�1/.�5// D
.8; 5/ and a5b D .8;�5/ � .0;�1/ D .8C .�5/.0/; .�5/.�1// D .8; 5/, and so we
conclude that Z3 Ì˛ V Š N Ì˛ Z�

12 is isomorphic to the dihedral group D6.

8. Using the isomorphism between Z�
5 and Aut.Z5/, define an action � W Z�

5 ! Z�
5

of Z�
5 on Z5 by �.x/ D x2, for all x 2 Z�

5 .

(a) Find elements a of order 10 and b of order 4 with b2 D a5 and ba D a�1b
such that Z5 Ì� Z�

5 can be described as faibj j 0 � i < 10; 0 � j < 2g.

Solution: Let Z�
5 D f˙1;˙2g and Z5 D f0; 1; 2; 3; 4g. Since Aut.Z5/ Š Z�

5 , the
homomorphism � defines a linear action of Z�

5 on Z5 in which �k.n/ D �.k/ �n D
k2n, for k 2 Z�

5 , n 2 Z5. Let a D .1;�1/ and b D .0; 2/. For .n1; k1/; .n2; k2/ 2
Z5 Ì� Z�

5 we have .n1; k1/ � .n2; k2/ D .n1 C .k1/
2n2; k1k2/, so in particular

.1;�1/�.n; k/ D .1Cn;�k/ and .0; k1/�.0; k2/ D .0; k1k2/. It follows that hai D
f.0; 1/; .1;�1/; .2; 1/; .3;�1/; .4; 1/; .0;�1/; .1; 1/; .2;�1/; .3; 1/; .4;�1/g and
hbi D f.0; 1/; .0; 2/; .0;�1/; .0;�2/g. Thus b2 D a5, and bab�1 D
.0; 2/�.1;�1/�.0;�2/ D .0C4�1;�2/�.0;�2/ D .4;�2/�.0;�2/ D .4C4�0;�1/ D
.4;�1/ D a9, and so ba D a�1b. Furthermore, .n; 1/ � .0; 2/ D .n; 2/ and
.n;�1/ � .0; 2/ D .n;�2/ so it is clear that G D faibj j 0 � i < 10; 0 � j < 2g.

(b) Show that the Frobenius group F20 has no element of order 10. Conclude that
Z5 Ì� Z�

5 is not isomorphic to Z5 Ì� Z�
5 Š F20.

Solution: In F20 an element of the form
�
1 0

x 1

�
has order 5 if x ¤ 0. Since

�
1 0

x a

�4

D
�
1 0

y a4

�
, where y D x.1CaCa2Ca3/, it follows that

�
1 0

x a

�

has order 4 for a D 2; 3; 4. (A routine calculation shows that 1C aC a2 C a3 D 0
for a D 2; 3; 4.) Therefore F20 has no element of order 10.

10. Let N andK be groups, let ˛;ˇ W K ! Aut.N / be group homomorphisms, let
� 2 Aut.N / , and define � W N Ì˛K ! N Ìˇ K by setting �..n; k// D .�.n/; k/,
for all n 2 N , k 2 K. Show that � is an isomorphism if and only if ˇ D i�˛,
where i� is the inner automorphism of Aut.N / determined by � .

Solution: We have defined � by setting �..n; k// D .�.n/; k/, for all n 2 N ,
k 2 K, so it is clear that � is one-to-one and onto since � is an automorphism.
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For n1; n2 2 N and k1; k2 2 K, we have

�..n1; k1/.n2; k2// D �..n1˛k1
.n2/; k1k2//

D .�.n1˛k1
.n2//; k1k2/

D .�.n1/�.˛k1
.n2//; k1k2/

�..n1; k1//�..n2; k2// D .�.n1/; k1/.�.n2/; k2/

D .�.n1/ˇk1
.�.n2//; k1k2/

Thus � preserves the respective multiplications if and only if �.˛k.n// D ˇk.�.n//
for all n 2 N and k 2 K. We can write this as �˛k D ˇk� , for all k 2 K, and so
ˇk D �˛k��1, for all k 2 K. Therefore ˇ.k/ D i�˛.k/, for all k 2 K.

10.4. Classification of Groups of Small Order

6. Show that the holomorph Hn D Zn Ì˛ Z�
n of Zn can be represented as the set

of matrices of the form
�
1 0

x a

�
, where x 2 Zn and a 2 Z�

n .

Solution: The first issue is that up to this point we have only considered matrices
with entries in a field, and these matrices have entries in a commutative ring Zn.
The standard proof that multiplication of matrices is associative (when the entries
are from a field) remains valid when the entries come from a commutative ring R,

and it is clear that
�
1 0

0 1

�
is a multiplicative identity element. If a; b; c; d 2 R,

then
�
a b

c d

� �
d �b

�c a

�
D .ad � bc/

�
1 0

0 1

�
since R is commutative, and

so the matrix
�
a b

c d

�
is invertible if and only if its determinant ad � bc is a unit

of R. These observations show that the matrices we are considering are invertible.

In fact,
�
1 0

x a

��1

D
�

1 0

�a�1x a�1

�
, since a is a unit of Zn.

For .x; a/ 2 Zn Ì˛ Z�
n , define �..x; a// D

�
1 0

x a

�
. Then � is a group

homomorphism since �..x1; a1/.x2; a2// D �..x1 C a1x2; a1a2// D�
1 0

x1 C a1x2 a1a2

�
D

�
1 0

x1 a1

� �
1 0

x2 a2

�
D �..x1; a1//�..x2; a2//. It

is clear that � is one-to-one and onto, and so � is an isomorphism.
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9. Consider the holomorph H15 D Z15 Ì Z�
15 of Z15, using its representation from

Exercise 6 as matrices of the form
�
1 0

x a

�
, where x 2 Z15 and a 2 Z�

15. Note

that Z�
15 has three cyclic subgroups of order 2: h�1i, h4i, and h�4i.

(a) Let G1 be the subgroup of H15 with a 2 h�1i. Show that G1 Š D15.

Solution: Let c D
�
1 0

1 1

�
, and d D

�
1 0

0 �1
�

. Then o.c/ D 15, o.d/ D 2,

and dc D c�1d since the action of h�1i on Z15 changes the sign. Thus G1 Š
D15.

(b) Let G2 be the subgroup of H15 with a 2 h4i. Show that G2 Š Z3 �D5.

Solution: Let b D
�
1 0

0 4

�
. We have Z15 D 5Z15 ˚ 3Z15 Š Z3 ˚ Z5.

Since 4 � 5 D 20 � 5 .mod 15/ and 4 � 3 D 12 � �3 .mod 15/, the ele-
ment b acts as the identity on 5Z15 and changes the sign on 3Z15. Let H D��

1 0

x a

�ˇ̌
ˇ̌ x 2 5Z15; a D 1

�
, K D

��
1 0

x a

�ˇ̌
ˇ̌ x 2 3Z15; a 2 h4i

�
.

Then H is cyclic of order 3, so H Š Z3, and K Š D5 since it is a nonabelian
group of order 10. We have H \K D fI g, so HK D G2. To show that G2 is the
internal direct product of H and K we will show that elements of H and K com-

mute. Let
�
1 0

y 1

�
2 H and let

�
1 0

x a

�
2 K. Then

�
1 0

y 1

� �
1 0

x a

�
D

�
1 0

y C x a

�
, while

�
1 0

x a

� �
1 0

y 1

�
D

�
1 0

x C ay a

�
. But (as shown

above) since a D 1 or a D 4 and y D 0; 5; 10, we have ay � y .mod 15/,
and so the elements commute.

(c) Let G3 be the subgroup of H15 with a 2 h�4i. Show that G3 Š Z5 �D3.

Solution: Let b D
�
1 0

0 �4
�

. We have Z15 D 3Z15 ˚ 5Z15 Š Z5 ˚ Z3. Since

�4 � 3 D �12 � 3 .mod 15/ and �4 � 5 D �20 � �5 .mod 15/, the element b
acts as the identity on 3Z15 and changes the sign on 5Z15. As in part (b), it can be
checked that G3 is the internal direct product of H and K, for

H D
��

1 0

x a

�ˇ̌
ˇ̌ x 2 3Z15; a D 1

�
, K D

��
1 0

x a

�ˇ̌
ˇ̌ x 2 5Z15; a 2 h�4i

�
.

Furthermore, H Š Z5 and K Š D3, as required.

(d) Show that the groups G1, G2, G3 represent three distinct isomorphism classes.

Solution: We can distinguish between the groups by looking at their centers. Exer-
cise 22 of Section 3.6 shows that the center of Dn is trivial if n is odd. It is easy to
check that the center of a direct product is the direct product of the centers. Thus
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the center of G1 is trivial, the center of G2 is its Sylow 3-subgroup, and the center
of G3 is its Sylow 5-subgroup.

10. Show that any nonabelian group of order 30 is isomorphic toD15, Z3 �D5, or
Z5 �D3.

Solution: Let G be a group of order 30 D 2 � 3 � 5. By Theorem 7.4.4 the number
of Sylow 5-subgroups is 1 or 6, and the number of Sylow 3-subgroups is 1 or 10.
If neither of these Sylow subgroups were normal, then G would contain 6 � 4 D 24
elements of order 5 and and 10 � 2 D 20 elements of order 3, which is impossible.
We conclude that either the Sylow 5-sybgroup or the Sylow 3-subgroup is normal.

Suppose that the Sylow 5-subgroup P5 is normal. Then jG=P5j D 6 has a
subgroup of index 2 since G=P5 is isomorphic to Z6 or S3. Proposition 3.8.7
shows that G has a corresponding subgroup of index 2, which must be normal. If
the Sylow 3-subgroup P3 is normal, then jG=P3j D 10, and again G has a normal
subgroup of index 2 since the same is true for G=P3, which isomorphic to Z10 or
D5.

Since a subgroup of order 15 is isomorphic to Z15, we conclude that G is the
internal semidirect product of a normal cyclic group of order 15 by a subgroup
of order 2. By Theorem 10.4.4, we can consider the possible external semidirect
products. These are determined by a group homomorphism ˛ W C2 ! Z�

15. Let
Z�

15 D f˙1;˙2;˙4;˙8g. The image of ˛ in Z�
15 is f1g or one of three cyclic

subgroups of order 2: h�1i, h4i, and h�4i. Thus there are at most 3 isomorphism
classes of nonabelian external semidirect products Z15 Ì˛ C2. The desired con-
clusion, that G is belongs to one of the isomorphism classes represented by D15,
Z3 �D5, or Z5 �D3, now follows from Exercise 9.


