Selected Solutions for Students to accompany

Abstract Algebra

Fourth Edition

JOHN A. BEACHY

WILLIAM D. BLAIR

For copies of this supplement, see the website www.waveland.com of Waveland Press, Inc.
4180 IL Route 83, Suite 101
Long Grove, Illinois 60047
(847) 634-0081

Copyright © 2018 by John A. Beachy and William D. Blair

Permission is granted to copy this document in electronic form, or to print it for personal use, under these conditions:
it must be reproduced in whole;
it must not be modified in any way;
it must not be used as part of another publication.

Contents

TO THE STUDENT
1 INTEGERS 1
1.1 Divisors 1
1.2 Primes 1
1.3 Congruences 2
1.4 Integers Modulo n 4
2 FUNCTIONS 5
2.1 Functions 5
2.2 Equivalence Relations 6
2.3 Permutations 8
3 GROUPS 10
3.1 Definition of a group 10
3.2 Subgroups 12
3.3 Constructing Examples 13
3.4 Isomorphisms 16
3.5 Cyclic Groups 16
3.6 Permutation Groups 17
3.7 Homomorphisms 18
3.6 Cosets, Normal Subgroups, and Factor Groups 20
4 POLYNOMIALS 21
4.1 Fields; Roots of Polynomials 21
4.2 Factors 21
4.3 Existence of Roots 22
4.4 Polynomials over $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$, and \mathbf{C} 23
5 COMMUTATIVE RINGS 25
5.1 Commutative Rings; Integral Domains 25
5.2 Ring Homomophisms 25
5.3 Ideals and Factor Rings 26
5.4 Quotient Fields 28
6 FIELDS 30
6.1 Algebraic Elements 30
6.2 Finite and Algebraic Extensions 30
6.4 Splitting Fields 31
6.5 Finite Fields 32
7 STRUCTURE OF GROUPS 34
7.1 Isomorphism Theorems; Automorphisms 34
7.2 Conjugacy 34
7.3 Groups Acting on Sets 36
7.4 The Sylow Theorems 37
7.5 Finite Abelian Groups 39
7.6 Solvable Groups 40
7.7 Simple Groups 42
8 GALOIS THEORY 45
8.1 The Galois Group of a Polynomial 45
8.2 Multiplicity of Roots 46
8.3 The Fundamental Theorem of Galois Theory 47
8.4 Solvability by Radicals 47
8.5 Cyclotomic Polynomials 48
8.6 Computing Galois Groups 49
9 UNIQUE FACTORIZATION 51
9.1 Principal Ideal Domains 51
9.2 Unique Factorization Domains 51
9.3 Some Diophantine Equations 53
10 GROUPS: SELECTED TOPICS 55
10.1 Nilpotent Groups 55
10.2 Internal Semidirect Products of Groups 56
10.3 External Semidirect Products of Groups 58
10.4 Classification of Groups of Small Order 60

TO THE STUDENT

The text contains a little over 1,000 exercises. In "Selected Solutions for Students" we have written up complete solutions for a bit more than 10% of them. In many cases we chose these problems to solve because they play a significant role in the general development. Some of the longer problems could probably serve as a "project", taking you along a new pathway. We hope that having these solutions will encourage you to work on some problems that haven't been assigned.

The ideal way to use this set of solutions is to work on a solved exercise, and if you get stuck, uncover just enough of the solution to get started again. We can't emphasize enough that the aim of working on an exercise isn't just to solve the problem. The process is vitally important: it will probably involve a search for theorems in the text that might serve as tools; it may involve making up some examples of your own so that you really understand the question. Hopefully, everthing leading up to a solution will add to the material you have really mastered.

So, good luck, and only peek at the solutions as a last resort!

John Beachy

Bill Blair

1 INTEGERS

1.1. Divisors

17. Show that the positive integer k is the difference of two odd squares if and only if k is divisible by 8 .

Solution: If $k=n^{2}-m^{2}$, where m and n are odd integers, then as in Example 1.1.7 we can write $k=(2 r+1+2 s+1)(2 r+1-2 s-1)=(2)(r+s+1)(2)(r-s)$ for some $r, s \in \mathbf{Z}$. Now we need to take two cases. First, if $r-s$ is even, then $r-s$ has 2 as a factor, and so k has 8 as a factor. Second, if $r-s$ is odd, then $r+s=(r-s)+(2 s)$ is the sum of an odd integer and an even integer, so it must also be odd. That means that $r+s+1$ is even, so it has 2 as a factor, and therefore k again has 8 as a factor. Showing that we can factor 8 out of $m^{2}-n^{2}$ gives exactly what we were to prove: if m and n are odd, then $m^{2}-n^{2}$ is divisible by 8 .

Conversely, if $8 \mid k$, then $k=8 t$ for some $t \in \mathbf{Z}$, and so $(2 t+1)^{2}-(2 t-1)^{2}=$ $4 t^{2}+4 t+1-4 t^{2}+4 t-1=8 t=k$.
18. Give a detailed proof of the statement in the text that if a and b are integers, then $b \mid a$ if and only if $a \mathbf{Z} \subseteq b \mathbf{Z}$.

Solution: Suppose that $b \mid a$. Then there exists $r \in \mathbf{Z}$ such that $a=b r$. If $x \in a \mathbf{Z}$, then $x=a t$ for some $t \in \mathbf{Z}$. Hence $x=a t=(b r) t=b(r t)$ and so $x \in b \mathbf{Z}$.

Conversely, suppose that $a \mathbf{Z} \subseteq b \mathbf{Z}$. Then since $a=a \cdot 1 \in a \mathbf{Z}$ we have $a \in b \mathbf{Z}$. Thus $a=b t$ for some $t \in \mathbf{Z}$ and so $b \mid a$.

1.2. Primes

18. Let a, b be nonzero integers with $(a, b)=1$. Compute $(a+b, a-b)$.

Solution: Let $d=\operatorname{gcd}(a+b, a-b)$, and divide $a+b$ by $a-b$ to get $a+b=$ $1(a-b)+2 b$, which shows that $d=\operatorname{gcd}(a-b, 2 b)$. Since $\operatorname{gcd}(a, b)=1$, we can write $m a+n b=1$ for some $m, n \in \mathbf{Z}$, and then $m(a-b)+(m+n) b=1$. Because $d \mid(a-b)$, it follows that $\operatorname{gcd}(d, b)=1$. But then $d \mid 2 b$ implies, by Proposition 1.2.3 (b), that $d \mid 2$.
Case 1. If $a-b$ is even, then $\operatorname{gcd}(a-b, 2 b) \geq 2$, so $d=2$.
Case 2: If $a-b$ is odd, then $\operatorname{gcd}(a-b, 2)=1$. The equation $m(a-b)+(m+n) b=1$ shows that $\operatorname{gcd}(a-b, b)=1$, so Proposition 1.2.3 (d) implies that $\operatorname{gcd}(a-b, 2 b)=1$, and therefore $d=1$.
22. Show that if a, b are positive integers such that $(a, b)=1$ and $a b$ is a square, then a and b are also squares.

Solution: Let $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ and $b=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{s}^{\beta_{s}}$. Since $\operatorname{gcd}(a, b)=1$, no p_{i} is equal to a q_{j}. Now $a b=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}} q_{1}^{\beta_{1}} \cdots q_{s}^{\beta_{s}}$ and the prime powers can be reordered to give the factorization of $a b$ into distinct prime powers. Since $a b$ is a square, each α_{i} and β_{j} is even, and hence a and b are squares.
30. If a, b, c are positive integers such that $a^{2}+b^{2}=c^{2}$, then (a, b, c) is called a Pythagorean triple.
(a) Show that a and b cannot both be odd.

Solution: If $a=2 n+1$ and $b=2 m+1$ are odd, then $a^{2}+b^{2}=$
$(2 n+1)^{2}+(2 m+1)^{2}=4 n^{2}+4 n+1+4 m^{2}+4 m+1=4 t+2$ for some $t \in \mathbf{Z}$. If c is even, then $c=2 k$ for some k and $c^{2}=4 k^{2} \neq 4 t+2$. If c is odd, then $c=2 s+1$ for some s and $c^{2}=4 s^{2}+4 s+1 \neq 4 t+2$. Thus one of a or b must be even.
(b) Assume that a is even. Show that there exist relatively prime integers m and n such that $a=2 m n, b=m^{2}-n^{2}$, and $c=m^{2}+n^{2}$.
Solution: Since a is even we can write $a=2 u$ for some $u \in \mathbf{Z}$. Note that $a^{2}=$ $c^{2}-b^{2}=(c-b)(c+b)$. Since b and c must both be odd, $2 \mid(c-b)$ and $2 \mid(c+b)$, and it also follows from Exercise 18 that $\operatorname{gcd}\left(\frac{c-b}{2}, \frac{c+b}{2}\right)=1$. Both $\frac{c-b}{2}$ and $\frac{c+b}{2}$ are squares (see Exercise 22), say $\frac{c+b}{2}=m^{2}$ and $\frac{c-b}{2}=n^{2}$. Since $u^{2}=$ $\left(\frac{c-b}{2}\right)\left(\frac{c+b}{2}\right)$, we have $u=m n$. Therefore $a=2 m n, b=\frac{c+b}{2}-\frac{c-b}{2}=m^{2}-n^{2}$, and $c=\frac{c+b}{2}+\frac{c-b}{2}=m^{2}+n^{2}$. Since the greatest common divisor of a, b, and c is 1 , the same is true for m and n.

1.3. Congruences

26. Prove that the fourth power of an integer can only have $0,1,5$, or 6 as its units digit.
Solution: Since the question deals with the units digit of n^{4}, it is asking us to find $n^{4}(\bmod 10)$. All we need to do is to compute the fourth power of each congruence class modulo 10: $0^{4}=0,(\pm 1)^{4}=1,(\pm 2)^{4}=16 \equiv 6(\bmod 10),(\pm 3)^{4}=81 \equiv$ $1(\bmod 10),(\pm 4)^{4} \equiv 6^{2} \equiv 6(\bmod 10)$, and $5^{4} \equiv 5^{2} \equiv 5(\bmod 10)$. This shows that the only possible units digits for n^{4} are $0,1,5$, and 6 .
27. (a) Show that if $m \in \mathbf{Z}, m \geq 0$, such that $2^{m}+1$ is prime, then $m=0$ or m is a power of 2 .

Solution: If $m=0$, then $2^{m}+1=1+1=2$ is prime.
Suppose that $m>0$ and $m=r s$, where r is the largest odd divisor of m. Then

$$
2^{m}+1=2^{r s}+1=\left(2^{s}+1\right)\left(2^{s(r-1)}-2^{s(r-2)}+\ldots-2^{s}+1\right) .
$$

Since $2^{m}+1$ is prime and $2^{s}+1>1$, we must have $2^{s(r-1)}-2^{s(r-2)}+\ldots-2^{s}+1=$ 1 , and thus $r=1$. Therefore $m=2^{n}$ for some $n \in \mathbf{Z}, n \geq 0$, since r is the largest odd divisor of m.
(b) Show that F_{5} is divisible by 641 , providing a counterexample to Fermat's belief that all Fermat numbers are prime.
Solution: We have $641=640+1=5 \cdot 2^{7}+1$ and $641=625+16=5^{4}+2^{4}$, so $5 \cdot 2^{7} \equiv-1(\bmod 641)$ and $2^{4} \equiv-5^{4}(\bmod 641)$. Then $F_{5}=2^{2^{5}}+1=2^{32}+1=$ $2^{4} 2^{28}+1 \equiv-5^{4} 2^{28}+1 \equiv-\left(5 \cdot 2^{7}\right)^{4}+1 \equiv-(-1)^{4}+1 \equiv 0(\bmod 641)$, showing that F_{5} is divisible by 641 .
(c) Show that $F_{n} \equiv 7(\bmod 10)$ for $n \geq 2$.

Solution: To give a proof by induction, we first have $F_{2}=2^{2^{2}}+1=17 \equiv$ $7(\bmod 10)$. Suppose that $F_{n}=2^{2^{n}}+1 \equiv 7(\bmod 10)$. Then $F_{n+1}=2^{2^{n+1}}+1=$ $\left(2^{2^{n}}\right)^{2}+1$. Since $2^{2^{n}}=F_{n}-1 \equiv 6(\bmod 10)$, we have $\left(2^{2^{n}}\right)^{2} \equiv 6^{2} \equiv$ $6(\bmod 10)$, and so $F_{n+1}=\left(2^{2^{n}}\right)^{2}+1 \equiv 6+1 \equiv 7(\bmod 10)$.
(d) Show that $\prod_{0 \leq k<m} F_{k}=F_{m}-2$.

Solution: We have $F_{0}=F_{1}-2$ since $3=5-2$, so the result is true for $m=1$. Assume that $\prod_{0 \leq k<m} F_{k}=F_{m}-2$. Then $\prod_{0 \leq k<m+1} F_{k}=\left(\prod_{0 \leq k<m} F_{k}\right) F_{m}=$ $\left(F_{m}-2\right) F_{m}=\left(2^{2^{m}}-1\right)\left(2^{2^{m}}+1\right)=2^{2^{2^{m+1}}}-1=F_{m+1}-2$ and the result follows by induction.
(e) Show that $\left(F_{n}, F_{m}\right)=1$ if $n \neq m$.

Solution: Without loss of generality, suppose that $n<m$. If $d \mid F_{n}$ and $d \mid F_{m}$, then $d \mid \prod_{0 \leq k<m} F_{k}$ and so $d \mid\left(F_{m}-2\right)$. But if $d \mid F_{m}$ and $d \mid\left(F_{m}-2\right)$, then $d \mid 2$, so $d=2$ or $d=1$. Since $F_{n}=2^{2^{n}}+1$ is odd, we have $d=1$, and therefore $\left(F_{n}, F_{m}\right)=1$.
Alternate proof: Suppose that $n<m$ and p is a common prime divisor of $2^{2^{n}}+1$ and $2^{2^{m}}+1$. Then $2^{2^{n}} \equiv-1(\bmod p)$ and $2^{2^{m}} \equiv-1(\bmod p)$. But $2^{2^{m}}$ is an even power of $2^{2^{n}}$, since $n<m$, which implies that $2^{2^{m}} \equiv 1(\bmod p)$, a contradiction.
(f) Use part (e) to give a new proof that there are infinitely many prime numbers.

Solution: Each F_{n} is either prime or divisible by a prime. Since $\left(F_{n}, F_{m}\right)=1$ for $n \neq m$, each number F_{n} has a prime divisor that does not divide any other F_{n}. Since there are infinitely many numbers of the form F_{n}, there are infinitely many prime numbers.

1.4. Integers Modulo n

14. Show that \mathbf{Z}_{17}^{\times}is cyclic.

Solution: We begin by trying [2]. We have [2] ${ }^{2}=[4],[2]^{3}=[8]$, and $[2]^{4}=$ $[16]=[-1]$. Exercise 10 shows that the multiplicative order of an element has to be a divisor of $\varphi(17)=16$, so the next possibility to check is 8 . Since $[2]^{8}=$ $[-1]^{2}=[1]$, it follows that [2] has multiplicative order 8 .

We next try $[3]$. We have $[3]^{2}=[9],[3]^{4}=[81]=[-4]$, and $[3]^{8}=[16]=$ $[-1]$. The only divisor of 16 that is left to try is 16 itself, so [3] does in fact have multiplicative order 16 , and we are done.
19. Using the formula for $\varphi(n)$, compute $\varphi(27), \varphi(81)$, and $\varphi\left(p^{\alpha}\right)$, where p is a prime number. Give a proof that the formula for $\varphi(n)$ is valid when $n=p^{\alpha}$, where p is a prime number.
Solution: $\varphi(27)=27\left(1-\frac{1}{3}\right)=18 \quad \varphi(81)=81\left(1-\frac{1}{3}\right)=54$
In general, we have $\varphi\left(p^{\alpha}\right)=p^{\alpha}\left(1-\frac{1}{p}\right)=p^{\alpha-1}(p-1)$. We prove this by observing that there are $p^{\alpha-1}$ multiples of p between 1 and p^{α}, inclusive. Thus there are $p^{\alpha}-p^{\alpha-1}=p^{\alpha-1}(p-1)$ numbers that are relatively prime to p in the interval from 1 to p^{α}.
31. Prove that if m, n are positive integers with $(m, n)=1$, then $\varphi(m n)=$ $\varphi(m) \varphi(n)$.

Solution: By the Chinese remainder theorem the system $x \equiv a(\bmod m), x \equiv$ $b(\bmod n)$ has a unique solution s modulo $m n$. Define $f: \mathbf{Z}_{m} \times \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{m n}$ by $f\left([a]_{m},[b]_{n}\right)=[s]_{m n}$. If $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, n)=1$, then since $s \equiv$ $a(\bmod m)$ and $s \equiv b(\bmod n)$ we have $\operatorname{gcd}(s, m)=1$ and $\operatorname{gcd}(s, n)=1$. By Proposition 1.2.3 we have $\operatorname{gcd}(s, m n)=1$. Conversely, if $\operatorname{gcd}(s, m n)=1$ then $\operatorname{gcd}(s, m)=1$ and $\operatorname{gcd}(s, n)=1$ and since $a \equiv s(\bmod m)$ and $b \equiv s(\bmod n)$ we have $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, n)=1$. Thus $[a]$ and $[b]$ are units in \mathbf{Z}_{m} and \mathbf{Z}_{n} respectively if and only if $[s]$ is a unit in $\mathbf{Z}_{m n}$. Since $\mathbf{Z}_{m} \times \mathbf{Z}_{n}$ has $\varphi(m) \cdot \varphi(n)$ units while $\mathbf{Z}_{m n}$ has $\varphi(m n)$ units, we have $\varphi(m) \varphi(n)=\varphi(m n)$.
32. Use Exercise 19 and Exercise 31 to prove Proposition 1.4.8.

Solution: Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ be a factorization of n into distinct prime powers. By Exercise 31, $\varphi(n)=\prod_{j=1}^{t} \varphi\left(p_{i}^{\alpha_{i}}\right)=\prod_{j=1}^{t} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)$. The last equality follows from Exercise 19.

2 FUNCTIONS

2.1. Functions

1. In each of the following parts, determine whether the given function is one-toone and whether it is onto.
(d) $f: \mathbf{R}^{+} \rightarrow \mathbf{R} ; f(x)=\ln x$

Solution: If $\ln x_{1}=\ln x_{2}$ for $x_{1}, x_{2} \in \mathbf{R}^{+}$, then $x_{1}=e^{\ln \left(x_{1}\right)}=e^{\ln \left(x_{2}\right)}=x_{2}$, showing that f is one-to-one. Given $y \in \mathbf{R}$, we have $y=\ln \left(e^{y}\right)$, and so f is also onto. Note that we have really used the fact that e^{x} is an inverse function for $\ln x$. (See the solution to Exercise 3 (d).)
Alternate solution: Calculus textbooks often give the following conditions for functions whose domain and codomain are subsets of \mathbf{R}. A function is one-to-one if and only if any horizontal line cuts the graph of the function in at most one point. A function is onto if and only if any horizontal line through the codomain (on the y-axis) cuts the graph of the function in at least one point. The graph of $y=\ln x$ meets these criteria, so $\ln x$ is one-to-one and onto.
3. For each one-to-one and onto function in Exercise 1, find the inverse of the function.
(d) $f: \mathbf{R}^{+} \rightarrow \mathbf{R} ; f(x)=\ln x$

Solution: Define $g: \mathbf{R} \rightarrow \mathbf{R}^{+}$by $g(y)=e^{y}$, for all $y \in \mathbf{R}$. Then $g \circ f(x)=$ $g(f(x))=e^{\ln x}=x$ for all $x \in \mathbf{R}^{+}$, and $f \circ g(x)=f(g(x))=\ln \left(e^{x}\right)=x$ for all $x \in \mathbf{R}$, This shows that g is the inverse function of f.
Note: Given that $\ln x$ has an inverse, we could have used Proposition 2.1.7 to solve Exercise 1 (d).
11. Let k and n be positive integers. For a fixed $m \in \mathbf{Z}$, define the formula $f: \mathbf{Z}_{n} \rightarrow \mathbf{Z}_{k}$ by $f\left([x]_{n}\right)=[m x]_{k}$, for $x \in \mathbf{Z}$. Show that f defines a function if and only if $k \mid m n$.

Solution: First suppose that $k \mid m n$. If $\left[x_{1}\right]_{n}=\left[x_{2}\right]_{n}$ then $x_{1} \equiv x_{2}(\bmod n)$ and so $n \mid\left(x_{1}-x_{2}\right)$ and thus $m n \mid\left(m x_{1}-m x_{2}\right)$. Since $k \mid m n$, we then have $k \mid\left(m x_{1}-m x_{2}\right)$, and so $\left[m x_{1}\right]_{k}=\left[m x_{2}\right]_{k}$. Hence f is well-defined.

Conversely, suppose that f is well-defined. Then since $[0]_{n}=[n]_{n}$ we have $\left.{ }_{[m n}\right]_{k}=f\left([n]_{n}\right)=f\left([0]_{n}\right)=[m \cdot 0]_{k}=[0]_{k}$. Hence $m n \equiv 0(\bmod k)$ and $k \mid m n$.
17. Let $f: A \rightarrow B$ be a function. Prove that f is onto if and only if $h \circ f=k \circ f$ implies $h=k$, for every set C and all choices of functions $h: B \rightarrow C$ and $k: B \rightarrow C$.

Solution: Suppose that f is onto. Let $b \in B$. Then there exists $a \in A$ with $f(a)=b$. If $h \circ f=k \circ f$ then $h(b)=h(f(a))=(h \circ f)(a)=(k \circ f)(a)=$ $k(f(a))=k(b)$. Since $h(b)=k(b)$ for all $b \in B$, we have $h=k$.

Suppose that f is not onto. Let $b_{0} \in B$ such that $b_{0} \notin f(A)$. Let $C=\{1,2\}$ and define $h: B \rightarrow C$ by $h(b)=1$ for all $b \in B$; define $k: B \rightarrow C$ by $k(b)=1$ for $b \in B, b \neq b_{0}$ and $k\left(b_{0}\right)=2$. Then $h \neq k$, since $h\left(b_{0}\right)=1 \neq 2=k\left(b_{0}\right)$. On the other hand $h \circ f(a)=h(f(a))=1$ and $k \circ f(a)=k(f(a))=1$ since $f(a) \neq b_{0}$. Since $h \circ f$ and $k \circ f$ have the same domain and codomain, $h \circ f=k \circ f$.

2.2. Equivalence relations

11. Let W be a subspace of a vector space V over \mathbf{R}, (that is, the scalars are assumed to be real numbers). We say that two vectors $\mathbf{u}, \mathbf{v} \in V$ are congruent modulo W if $\mathbf{u}-\mathbf{v} \in W$, written $\mathbf{u} \equiv \mathbf{v}(\bmod W)$.
(d) Let $V=\mathbf{R}^{2}$, and let $W=\{(x, 0) \mid x \in \mathbf{R}\}$. Describe the equivalence class $[(x, y)]_{W}$ geometrically. (This is only the first part of the question.)
Solution: Since $\left(x_{1}, y_{1}\right) \equiv\left(x_{2}, y_{2}\right)(\bmod W)$ if and only if $\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \in$ W if and only if $\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \in W$ if and only if $y_{1}=y_{2}$, the equivalence class $[(x, y)]=\{(t, y) \mid t \in \mathbf{R}\}$ is the horizontal line through y.
12. Let $T=\left\{(x, y, z) \in \mathbf{R}^{3} \mid(x, y, z) \neq(0,0,0)\right\}$. Define \sim on T by $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ if there exists a nonzero real number λ such that $x_{1}=$ $\lambda x_{2}, y_{1}=\lambda y_{2}$, and $z_{1}=\lambda z_{2}$.
(a) Show that \sim is an equivalence relation on T.

Solution: (i) Since $x=1 \cdot x, y=1 \cdot y$, and $z=1 \cdot z$ we have $(x, y, z) \sim(x, y, z)$ for any $(x, y, z) \in T$. Hence \sim is reflexive.
(ii) Suppose that $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$. Then there exists $0 \neq \lambda \in \mathbf{R}$ such that $x_{1}=\lambda x_{2}, y_{1}=\lambda y_{2}$, and $z_{1}=\lambda z_{2}$. Now $\lambda^{-1} \in \mathbf{R}$ and $\lambda^{-1} \neq 0$. Since $x_{2}=\lambda^{-1} x_{1}, y_{2}=\lambda^{-1} y_{1}$, and $z_{2}=\lambda^{-1} z_{1}$, we have $\left(x_{2}, y_{2}, z_{2}\right) \sim\left(x_{1}, y_{1}, z_{1}\right)$. Hence \sim is symmetric.
(iii) Suppose that $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right) \sim\left(x_{3}, y_{3}, z_{3}\right)$. Then there exist $0 \neq \lambda \in \mathbf{R}$ and $0 \neq \mu \in \mathbf{R}$ such that $x_{1}=\lambda x_{2}, y_{1}=\lambda y_{2}$, and $z_{1}=\lambda z_{2}$ and also $x_{2}=\mu x_{3}, y_{2}=\mu y_{3}$, and $z_{2}=\mu z_{3}$. Hence $x_{1}=(\lambda \mu) x_{3}$, $y_{1}=(\lambda \mu) y_{3}$, and $z_{1}=(\lambda \mu) z_{3}$, while $0 \neq \lambda \mu \in \mathbf{R}$. Thus $\left(x_{1}, y_{1}, z_{1}\right) \sim$ $\left(x_{3}, y_{3}, z_{3}\right)$ and \sim is transitive.

Since \sim is reflexive, symmetric, and transitive it follows that \sim is an equivalence relation on T.
(b) Give a geometric description of the equivalence class of (x, y, z).

Solution: The class $[x, y, z]=\{(\lambda x, \lambda y, \lambda z) \mid \lambda \in \mathbf{R}$ and $\lambda \neq 0\}$ is a line through $(0,0,0)$ and (x, y, z) with the point $(0,0,0)$ deleted.
(c) Let $(a, b, c) \in T$, and suppose that $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$. Show that if $a x_{1}+b y_{1}+c z_{1}=0$, then $a x_{2}+b y_{2}+c z_{2}=0$. Conclude that

$$
L=\left\{[x, y, z] \in \mathbf{P}^{2} \mid a x+b y+c z=0\right\}
$$

is a well-defined subset of \mathbf{P}^{2}.
Solution: Suppose that $\left(x_{1}, y_{1}, z_{1}\right) \sim\left(x_{2}, y_{2}, z_{2}\right)$. Then there exists $0 \neq \lambda \in \mathbf{R}$ such that $x_{1}=\lambda x_{2}, y_{1}=\lambda y_{2}$, and $z_{1}=\lambda z_{2}$. Now $0=a x_{1}+b y_{1}+c z_{1}=$ $\lambda\left(a x_{2}+b y_{2}+c z_{2}\right)$. Since $\lambda \neq 0$, we have $a x_{2}+b y_{2}+c z_{2}=0$. Hence $L=\{[x, y, z] \mid a x+b y+c z=0\}$ is well-defined.
(d) Show that the triples $\left(a_{1}, b_{1}, c_{1}\right) \in T$ and $\left(a_{2}, b_{2}, c_{2}\right) \in T$ determine the same line if and only if $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$.
Solution: Let L_{i} be the line determined by $\left(a_{i}, b_{i}, c_{i}\right)$. Thus $L_{i}=\{[x, y, z] \mid$ $\left.a_{i} x+b_{i} y+c_{i} z=0\right\}$ for $i=1$, 2. Suppose that $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$. Then there exists $0 \neq \lambda \in \mathbf{R}$ such that $a_{1}=\lambda a_{2}, b_{1}=\lambda b_{2}$, and $c_{1}=\lambda c_{2}$. Thus, if $(x, y, z) \in T$ and $a_{1} x+b_{1} y+c_{1} z=0$, then $\left(\lambda a_{1}\right) x+\left(\lambda b_{1}\right) y+\left(\lambda c_{1}\right) z=0$ and so $a_{2} x+b_{2} y+c_{2} z=0$. Hence $L_{1} \subseteq L_{2}$. Since $a_{2}=\lambda^{-1} a_{1}, b_{2}=\lambda^{-1} b_{1}$, and $c_{2}=\lambda^{-1} c_{1}$, we also have $L_{2} \subseteq L_{1}$. Hence if $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$, then we have $L_{1}=L_{2}$.

Conversely, suppose that $L_{1}=L_{2}$. Hence for $(x, y, z) \in T$ we have (1) $a_{1} x+b_{1} y+c_{1} z=0$ if and only if (2) $a_{2} x+b_{2} y+c_{2} z=0$. One of a_{2}, b_{2}, c_{2} is nonzero; without loss of generality suppose that $a_{2} \neq 0$. Then $a_{1} \neq 0$, for otherwise $x=1, y=0, z=0$ satisfies (1) but not (2). Let $\lambda=\frac{a_{1}}{a_{2}}$. Then $0 \neq \lambda \in \mathbf{R}$. Since $x=c_{1}, y=0, z=-a_{1}$ satisfies (1), it also satisfies (2) and so $a_{2} c_{1}=c_{2} a_{1}$, and since $x=b_{1}, y=-a_{1}, z=0$ satisfies (1), it also satisfies (2) and so $a_{2} b_{1}=b_{2} a_{1}$. Thus $c_{1}=\frac{a_{1}}{a_{2}} c_{2}=\lambda c_{2}$ and $b_{1}=\frac{a_{1}}{a_{2}} b_{2}=\lambda b_{2}$. Hence $a_{1}=\lambda a_{2}, b_{1}=\lambda b_{2}$, and $c_{1}=\lambda c_{2}$, and so $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$.
(e) Given two distinct points of \mathbf{P}^{2}, show that there exists exactly one line that contains both points.
Solution: Let $\left[x_{1}, y_{1}, z_{1}\right] \neq\left[x_{2}, y_{2}, z_{2}\right]$, and treat a, b, c as unknowns. Then the system $\left\{\begin{array}{l}a x_{1}+b y_{1}+c z_{1}=0 \\ a x_{2}+b y_{2}+c z_{2}=0\end{array}\right.$ has a nontrivial solution (a, b, c) since it consists of 2 homogeneous equations in 3 unknowns. Hence there exists at least one line L determined by (a, b, c) which both points satisfy. To show that the line is unique we use the "Rank-Nullity" theorem of linear algebra. Suppose that both points $\left[x_{1}, y_{1}, z_{1}\right]$ and $\left[x_{2}, y_{2}, z_{2}\right]$ satisfy the lines $L_{1}=\left\{[x, y, z] \mid a_{1} x+b_{1} y+c_{1} z=\right.$ $0\}$ and $L_{2}=\left\{[x, y, z] \mid a_{2} x+b_{2} y+c_{2} z=0\right\}$. Define $T_{i}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ by $T_{i}(x, y, z)=a_{i} x+b_{i} y+c_{i} z$ for $i=1,2$. Clearly T_{i} is a linear transformation and since at least one of a_{i}, b_{i}, c_{i} is nonzero the rank of T_{i} is 1 and the nullity
of T_{i} is 2 . Since both $\left(x_{1}, y_{1}, z_{1}\right)$ and (x_{2}, y_{2}, z_{2}) belong to the nullspace of T_{i} and since they are linearly independent, they form a basis for the nullspace of both T_{1} and T_{2}. Consider any vector $\left(x_{0}, y_{0}, z_{0}\right)$ which is not in the nullspace of T_{1} (or T_{2}). Then $T_{1}\left(x_{0}, y_{0}, z_{0}\right)=\lambda T_{2}\left(x_{0}, y_{0}, z_{0}\right)$ for some $0 \neq \lambda \in \mathbf{R}$. Consider $T_{1}-\lambda T_{2}$. The nullspace of $T_{1}-\lambda T_{2}$ is spanned by the three linearly independent vectors $\left(x_{0}, y_{0}, z_{0}\right),\left(x_{1}, y_{1}, z_{1}\right)$, and $\left(x_{2}, y_{2}, z_{2}\right)$. Thus the nullspace of $T_{1}-\lambda T_{2}$ is all of \mathbf{R}^{3} and so $T_{1}=\lambda T_{2}$. Applying T_{1} and T_{2} to $(1,0,0),(0,1,0)$ and $(0,0,1)$ we see that $a_{1}=\lambda a_{2}, b_{1}=\lambda b_{2}$, and $c_{1}=\lambda c_{2}$. Thus $\left(a_{1}, b_{1}, c_{1}\right) \sim\left(a_{2}, b_{2}, c_{2}\right)$ and by part (d) they determine the same line.
(f) Given two distinct lines, show that there exists exactly one point that belongs to both lines.

Solution: This is a similar argument to the one in (e).
(g) Show that the function $f: \mathbf{R}^{2} \rightarrow \mathbf{P}^{2}$ defined by $f(x, y)=[x, y, 1]$ is a one-to-one function.

Solution: Suppose that $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)$. Then $\left[x_{1}, y_{1}, 1\right]=\left[x_{2}, y_{2}, 1\right]$. Thus $x_{1}=\lambda x_{2}, y_{1}=\lambda y_{2}$, and $1=\lambda \cdot 1$. Hence $\lambda=1$ and $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$. Therefore f is one-to-one as required.
(h) Show that the embedding of part (g) takes lines to "lines."

Solution: A line in the affine plane has the form $a x+b y+c=0$ where not both a and b are zero. Thus (x, y) belongs to $a x+b y+c=0$ if and only if $[x, y, 1]$ belongs to $L=\{[x, y, z] \mid a x+b y+c z=0\}$.
(i) If two lines intersect in \mathbf{R}^{2}, show that the image of their intersection is the intersection of their images (under the embedding defined in part (g)).
Solution: Suppose that $a_{1} x+b_{1} y+c_{1}=0$ intersects $a_{2} x+b_{2} y+c_{2}=0$ at the point (x_{0}, y_{0}). If $L_{i}=\left\{[x, y, z] \mid a_{i} x+b_{i} y+c_{i} z=0\right\}$ for $i=1,2$, then we have that $\left[x_{0}, y_{0}, 1\right]$ belongs to the intersection of L_{1} and L_{2}.
(j) If two lines are parallel in \mathbf{R}^{2}, what happens to their images under the embedding into \mathbf{P}^{2} ?

Solution: If $a_{1} x+b_{1} y+c_{1}=0$ is parallel to $a_{2} x+b_{2} y+c_{2}=0$, then either (1) $b_{1}=b_{2}=0$ or (2) $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$. Suppose that $b_{1}=b_{2}=0$. Then the point $[0,1,0]$ belongs to both L_{1} and L_{2} where as before $L_{i}=\left\{[x, y, z] \mid a_{i} x+b_{i} y+c_{i} z=0\right\}$ for $i=1,2$. On the other hand, if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$, then $\left[-b_{1}, a_{1}, 0\right]=\left[-b_{2}, a_{2}, 0\right]$ belongs to L_{1} and L_{2}.

From (i) and (j) we see that in \mathbf{P}^{2} all lines intersect.

2.3. Permutations

15. Let $\tau \in S_{n}$ be the cycle $(1,2, \ldots, k)$ of length k, where $k \leq n$.
(a) Prove that if $\sigma \in S_{n}$, then $\sigma \tau \sigma^{-1}=(\sigma(1), \sigma(2), \ldots, \sigma(k))$. Thus $\sigma \tau \sigma^{-1}$ is a cycle of length k.
Solution: Assume that $\sigma \in S_{n}$, where $k \leq n$. If $j \in\{\sigma(1), \sigma(2), \ldots, \sigma(k-1)\}$ then say $j=\sigma(i)$. Now $\sigma \tau \sigma^{-1}(j)=\sigma \tau \sigma^{-1}(\sigma(i))=\sigma \tau(i)=\sigma(i+1)$. If $j=\sigma(k)$, then $\sigma \tau \sigma^{-1}(j)=\sigma \tau \sigma^{-1}(\sigma(k))=\sigma \tau(k)=\sigma(1)$. If $j \notin\{\sigma(1), \sigma(2), \ldots, \sigma(k)\}$, then $\sigma^{-1}(j) \notin\{1,2, \ldots, k\}$ and so $\sigma \tau \sigma^{-1}(j)=\sigma\left(\sigma^{-1}(j)\right)=j$. Hence $\sigma \tau \sigma^{-1}=(\sigma(1), \sigma(2), \ldots, \sigma(k))$.
(b) Let ρ be any cycle of length k. Prove that there exists a permutation $\sigma \in S_{n}$ such that $\sigma \tau \sigma^{-1}=\rho$.
Solution: Assume that $\tau, \rho \in S_{n}$, where $k \leq n$, and let $\rho=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. For the numbers i, with $i \leq n$, that do not appear in ρ, we can choose an ordering a_{k+1}, \ldots, a_{n}. Then we can define $\sigma=\left(\begin{array}{ccccccc}1 & 2 & \ldots & k & k+1 & \ldots & n \\ a_{1} & a_{2} & \ldots & a_{k} & a_{k+1} & \ldots & a_{n}\end{array}\right)$ and $\sigma \tau \sigma^{-1}=(\sigma(1), \ldots, \sigma(k))=\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\rho$.
16. View S_{3} as a subset of S_{5}, in the obvious way. For $\sigma, \tau \in S_{5}$, define $\sigma \sim \tau$ if $\sigma \tau^{-1} \in S_{3}$.
(d) Determine the total number of equivalence classes.

Solution: The equivalence class of μ is $\left\{\sigma \in S_{5} \mid \sigma \sim \mu\right\}$, which is equal to $\left\{\sigma \in S_{5} \mid \sigma \mu^{-1}=\tau\right.$ for some $\left.\tau \in S_{3}\right\}=\left\{\sigma \in S_{5} \mid \sigma=\tau \mu\right.$ for some $\left.\tau \in S_{3}\right\}$. Thus we can find the equivalence class of $\mu \in S_{5}$ by finding all products of the form $\tau \mu$, for $\tau \in S_{3}$. If $\tau_{1} \mu=\tau_{2} \mu$ for some τ_{1}, τ_{2}, then multiplying on the right by μ^{-1} shows that $\tau_{1}=\tau_{2}$. Thus the 6 permutations in S_{3} will yield 6 distinct products of the form $\tau \mu$ in the equivalence class of μ. It follows that every equivalence class has 6 members. Since S_{5} has 120 elements, the total number of equivalence classes is $\frac{120}{6}=20$.

3 GROUPS

3.1. Definition of a Group

4. Prove that multiplication of 2×2 matrices satisfies the associative law.

Solution: Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$, and $C=\left[\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right]$. Then

$$
\begin{aligned}
A(B C) & =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left(\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]\right) \\
& =\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} c_{11}+b_{12} c_{21} & b_{11} c_{12}+b_{12} c_{22} \\
b_{21} c_{11}+b_{22} c_{21} & b_{21} c_{12}+b_{22} c_{22}
\end{array}\right]=
\end{aligned}
$$

$\left[a_{11} b_{11} c_{11}+a_{11} b_{12} c_{21}+a_{12} b_{21} c_{11}+a_{12} b_{22} c_{21} a_{11} b_{11} c_{12}+a_{11} b_{12} c_{22}+a_{12} b_{21} c_{12}+a_{12} b_{22} c_{22}\right]$ $\left\lfloor a_{21} b_{11} c_{11}+a_{21} b_{12} c_{21}+a_{22} b_{21} c_{11}+a_{22} b_{22} c_{21} a_{21} b_{11} c_{12}+a_{21} b_{12} c_{22}+a_{22} b_{21} c_{12}+a_{22} b_{22} c_{22}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+b_{22} b_{22}
\end{array}\right]\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \\
& =\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\right)\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right] \\
& =(A B) C
\end{aligned}
$$

11. Show that the set of all 2×2 matrices over \mathbf{R} of the form $\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right]$ with $m \neq 0$ forms a group under matrix multiplication.
Solution: (i) The product $\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}n & c \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}m n & m c+b \\ 0 & 1\end{array}\right]$ of two elements of the given form has the proper form since $m n \neq 0$. Thus matrix multiplication is a binary operation on the given set.
(ii) Matrix multiplication is associative by Exercise 4.
(iii) The matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ has the proper form and it is the identity element under matrix multiplication.
(iv) Given $\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right]$, consider $\left[\begin{array}{cr}1 / m & -b / m \\ 0 & 1\end{array}\right]$. This matrix has the proper form and is the required inverse since $\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 / m & -b / m \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cr}1 / m & -b / m \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
12. Define $*$ on \mathbf{R} by $a * b=a+b-1$, for all $a, b \in \mathbf{R}$. Show that $(\mathbf{R}, *)$ is an abelian group.

Solution: Since $a * b=b * a$ for all $a, b \in \mathbf{R}$, the operation is commutative, and this eliminates some calculations.
(i) The operation $*: \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is the composite of ordinary addition followed by the function $f(x)=x-1$, so it is a well-defined function.
(ii) The operation is associative since $(a * b) * c=(a+b-1) * c=(a+b-1)+c-1=a+b+c-2$ and $a *(b * c)=a *(b+c-1)=a+(b+c-1)-1=a+b+c-2$.
(iii) Since $1 * b=1+b-1=b$ for all $b \in \mathbf{R}$, it follows that 1 is an identity. (We also have $b * 1=b$ since the operation is commutative.)
(iv) The inverse of a is $2-a$, since $a *(2-a)=a+(2-a)-1=1$. (Again, since the operation is commutative we do not need to check that $(2-1) * a=1$.)
19. Let G be a group. For $a, b \in G$, prove that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbf{Z}$ if and only if $a b=b a$.
Solution: If $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbf{Z}$, then in particular $(a b)^{2}=a^{2} b^{2}$, so $a b=b a$ by Example 3.1.2.

Conversely, suppose that $a, b \in G$ with $a b=b a$.
We will first show by induction that $b a^{n}=a^{n} b$ for all positive integers n. The result holds for $n=1$ by hypothesis. Now suppose that $b a^{k}=a^{k} b$. Then $b a^{k+1}=b a^{k} a=a^{k} b a=a^{k} a b=a^{k+1} b$, so the general result holds.

We next show that $(a b)^{n}=a^{n} b^{n}$ for all positive n. The result holds for $n=1$ by hypothesis. Now suppose that $(a b)^{k}=a^{k} b^{k}$. Then $(a b)^{k+1}=a b(a b)^{k}=$ $a b a^{k} b^{k}=a a^{k} b b^{k}=a^{k+1} b^{k+1}$.

We also have $(a b)^{0}=e=a^{0} b^{0}$.
Since $a b=b a$, we have $(a b)^{-1}=(b a)^{-1}$, and thus $b^{-1} a^{-1}=a^{-1} b^{-1}$. Finally, if $n<0$ then say $n=-m$, where $m>0$. Hence $(a b)^{n}=(a b)^{-m}=$ $\left((a b)^{-1}\right)^{m}=\left(b^{-1} a^{-1}\right)^{m}=\left(a^{-1} b^{-1}\right)^{m}=\left(a^{-1}\right)^{m}\left(b^{-1}\right)^{m}=a^{n} b^{n}$ as required.
20. Let G be a group. Prove that $a^{m} a^{n}=a^{m+n}$ for all $a \in G$ and all $m, n \in \mathbf{Z}$.

Solution: We let $n \in \mathbf{Z}$ and prove that $a^{m} a^{n}=a^{m+n}$ for all a and all positive integers m by induction. If $m=1$, then $a^{1} a^{n}=a \cdot a^{n}=a^{n+1}$. If $a^{m} a^{n}=a^{m+n}$, then $a^{m+1} a^{n}=\left(a a^{m}\right) a^{n}=a\left(a^{m} a^{n}\right)=a\left(a^{m+n}\right)=a^{m+n+1}=a^{(m+1)+n}$.

For $m=0$ we have $a^{0} a^{n}=e \cdot a^{n}=a^{n}=a^{0+n}$.
If $m<0$, say $m=-r$, then $a^{m} a^{n}=a^{-r} a^{n}=\left(a^{-1}\right)^{r}\left(a^{-1}\right)^{-n}=$ $\left(a^{-1}\right)^{r+(-n)}=\left(a^{-1}\right)^{-m+(-n)}=\left(\left(a^{-1}\right)^{-1}\right)^{m+n}=a^{m+n}$ as required.
21. Let G be a group. Prove that $\left(a^{m}\right)^{n}=a^{m n}$ for all $a \in G$ and all $m, n \in \mathbf{Z}$.

Solution: We let $n \in \mathbf{Z}$ and prove that $\left(a^{m}\right)^{n}=a^{m n}$ for all a and all positive integers m by induction. If $m=1$, then $\left(a^{1}\right)^{n}=a^{n}=a^{1 \cdot n}$. If $\left(a^{m}\right)^{n}=a^{m n}$,
then $\left(a^{m+1}\right)^{n}=\left(a^{m} \cdot a\right)^{n}=\left(a^{m}\right)^{n} a^{n}$ (by the proof in Exercise 19, since a^{m} and a commute) and so $\left(a^{m+1}\right)^{n}=a^{m n} \cdot a^{n}=a^{m n+n}=a^{(m+1) n}$.

For $m=0$ we have $\left(a^{m}\right)^{n}=\left(a^{0}\right)^{n}=e^{n}=e=a^{0}=a^{0 \cdot n}$.
If $m<0$, then $m=-r$ for some $r>0$ and so $\left(a^{m}\right)^{n}=\left(a^{-r}\right)^{n}=$ $\left(\left(a^{-1}\right)^{r}\right)^{n}=\left(a^{-1}\right)^{r n}=a^{-r n}=a^{m n}$, as required.
26. Show that if G is a finite group with an even number of elements, then there must exist an element $a \in G$ with $a \neq e$ such that $a^{2}=e$.
Solution: If G is any group and $x \in G$ with $x^{2} \neq e$, then $x \neq x^{-1}$ and $\left(x^{-1}\right)^{2}=$ $\left(x^{2}\right)^{-1} \neq e$. Thus G has an even number of elements x with $x^{2} \neq e$. If G has an even number of elements, this leaves an even number of elements x with $x^{2}=e$. There is at least one such element, the identity e. Thus there must be at least one more element a, with $a \neq e$ and $a^{2}=e$.

3.2. Subgroups

9. Let $G=\mathrm{GL}_{3}(\mathbf{R})$. Show that $H=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]\right\}$ is a subgroup of G.

Solution: We will use Proposition 3.2.2. If $\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{1} & 1 & 0 \\ b_{1} & c_{1} & 1\end{array}\right],\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{2} & 1 & 0 \\ b_{2} & c_{2} & 1\end{array}\right] \in H$,
then $\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{1} & 1 & 0 \\ b_{1} & c_{1} & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{2} & 1 & 0 \\ b_{2} & c_{2} & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ a_{1}+a_{2} & 1 & 0 \\ b_{1}+c_{1} a_{2}+b_{2} & c_{1}+c_{2} & 1\end{array}\right]$ is in H. The identity matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ belongs to H. If $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$ is in H, then $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -a & 1 & 0 \\ -b+c a & -c & 1\end{array}\right]$ is in H. Therefore H is a subgroup of G.

Note: The group H is known as the continuous Heisenberg group.
17. Prove that the intersection of any collection of subgroups of a group is again a subgroup.
Solution: We will use Corollary 3.2.3. The identity of the group belongs to each subgroup, so it belongs to their intersection. If elements a, b belong to the intersection, then they belong to each subgroup in the collection, and so $a b^{-1}$ belongs to
each subgroup. This shows that $a b^{-1}$ belongs to the intersection of all subgroups in the collection.
19. Let G be a group, and let $a \in G$. The set $C(a)=\{x \in G \mid x a=a x\}$ of all elements of G that commute with a is called the centralizer of a.
(a) Show that $C(a)$ is a subgroup of G.

Solution: We will use Proposition 3.2.2. (i) Let $x, y \in C(a)$. Then $x a=a x$ and $y a=a y$. Hence $(x y) a=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)$ and so $x y \in C(a)$. (ii) Since $e a=a=a e$, we have $e \in C(a)$. (iii) If $x \in C(a)$, then $x a=a x$ and so $x^{-1} a=\left(x^{-1} a\right)\left(x x^{-1}\right)=x^{-1}(a x) x^{-1}=x^{-1}(x a) x^{-1}=$ $\left(x^{-1} x\right) a x^{-1}=a x^{-1}$ and $x^{-1} \in C(a)$. Therefore $C(a)$ is a subgroup of G.
21. Let G be a group. The set $Z(G)=\{x \in G \mid x g=g x$ for all $g \in G\}$ of all elements that commute with every other element of G is called the center of G.
(a) Show that $Z(G)$ is a subgroup of G.

Solution: (i) Let $x, y \in Z(G)$ and $g \in G$. Then $x g=g x$ and $y g=g y$. Hence $(x y) g=x(y g)=x(g y)=(x g) y=(g x) y=g(x y)$ for all $g \in G$ and so $x y \in$ $Z(G)$. (ii) Since $e g=g e$ for all $g \in G$, we have $e \in Z(G)$. (iii) Let $x \in Z(G)$ and $g \in G$. Then $x g=g x$ and so $x^{-1} g=x^{-1} g x x^{-1}=x^{-1} x g x^{-1}=g x^{-1}$ for all $g \in G$. Thus $x^{-1} \in Z(G)$. Thus $Z(G)$ is a subgroup of G by Proposition 3.2.2.

3.3. Constructing Examples

4. Show that the list of elements of $\mathrm{GL}_{2}\left(\mathbf{Z}_{2}\right)$ given in Example 3.3.6 is correct.

Solution: To construct an invertible 2×2 matrix A over \mathbf{Z}_{2}, we can use any nonzero vector as the first row. Thus the first row can be $(1,0),(0,1)$, or $(1,1)$. Then the second row must be linearly independent of the first, so it cannot be a multiple of the first row. If $(1,0)$ is the first row, we can use $(0,1)$ or $(1,1)$ as the second. If $(0,1)$ is the first row, we can use $(1,0)$ or $(1,1)$ as the second. If $(1,1)$ is the first row, we can use $(1,0)$ or $(0,1)$ as the second. This gives us the 6 invertible matrices in Example 3.3.6:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

7. Let F be a field. Compute the center of $\mathrm{GL}_{2}(F)$.

Solution: As usual, we let 1 denote the multiplicative identity of F. We first note that $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ are invertible, and so they belong to $\mathrm{GL}_{2}(F)$. Let $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in Z\left(\operatorname{GL}_{2}(F)\right)$. Then $\left[\begin{array}{ll}a & a+b \\ c & c+d\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=$
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a+c & b+d \\ c & d\end{array}\right]$ and so $a=a+c$ and $a+b=b+d$.
Thus $c=0$ and $a=d$. Furthermore, $\left[\begin{array}{cc}a+b & b \\ a & a\end{array}\right]=\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=$ $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]=\left[\begin{array}{cc}a & b \\ a & a+b\end{array}\right]$ implies $a+b=a$ and so $b=0$. Thus $X=\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right]$ and so $Z\left(\mathrm{GL}_{2}(F)\right) \subseteq\left\{\left.\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right] \right\rvert\, 0 \neq a \in F\right\}$. Since $\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right]$ is clearly in the center, we have $Z\left(\operatorname{GL}_{2}(F)\right)=\left\{\left.\left[\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right] \right\rvert\, a \in F^{\times}\right\}$.
Comment: This proof actually computes the center as the intersection of the centralizers of just two elements, the particular matrices used in the proof.
15. (a) Generalize Definition 3.3 .3 to the case of the direct product of n groups.

Definition: Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups. We define

$$
G_{1} \times G_{2} \times \cdots \times G_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in G_{i} \text { for } i=1,2, \ldots, n\right\} .
$$

(b) Generalize Proposition 3.3.4 to the case of the direct product of n groups. Prove that your generalization is true.

Proposition. Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups.
(i) The direct product $G_{1} \times G_{2} \times \cdots \times G_{n}$ is a group under the multiplication

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots a_{n} b_{n}\right) .
$$

(ii) If $a_{i} \in G_{i}$ has order m_{i} for $i=1,2, \ldots, n$, then in $G_{1} \times G_{2} \times \cdots \times G_{n}$ the element ($a_{1}, a_{2}, \ldots a_{n}$) has order $\operatorname{lcm}\left[m_{1}, m_{2}, \ldots, m_{n}\right]$.

Proof: (i) The given multiplication defines a binary operation. The associative law holds since for $1 \leq i \leq n$ and all $a_{i}, b_{i}, c_{i} \in G_{i}$ we have

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(\left(b_{1},\right.\right. & \left.\left.b_{2}, \ldots, b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \\
& =\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1} c_{1}, b_{2} c_{2}, \ldots b_{n} c_{n}\right) \\
& =\left(a_{1}\left(b_{1} c_{1}\right), a_{2}\left(b_{2} c_{2}\right), \ldots, a_{n}\left(b_{n} c_{n}\right)\right) \\
& =\left(\left(a_{1} b_{1}\right) c_{1},\left(a_{2} b_{2}\right) c_{2}, \ldots,\left(a_{n} b_{n}\right) c_{n}\right) \\
& =\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right) \\
& =\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right)\left(c_{1}, c_{2}, \ldots, c_{n}\right) .
\end{aligned}
$$

If e_{i} is the identity element of G_{i} for $i=1,2, \ldots, n$, then $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is easily seen to be the identity element of $G_{1} \times G_{2} \times \cdots \times G_{n}$. Finally, for any element $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in G_{1} \times G_{2} \times \cdots \times G_{n}$, we have $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{-1}=$ $\left(a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{n}^{-1}\right)$.
(ii) Let $o\left(a_{i}\right)=m_{i}$ for $i=1,2, \ldots, n$. The order of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the least positive integer m such that $\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{m}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$. Thus for each i, we have $a_{i}^{m}=e_{i}$ and so $m_{i} \mid m$. The least such m such that $m_{i} \mid m$ for $i=1,2, \ldots, n$ is $\operatorname{lcm}\left[m_{1}, m_{2}, \ldots, m_{n}\right]$.
19. Let G be a group of order 6 . Show that G must contain an element of order 2 . Show that it cannot be true that every element different from e has order 2.
Solution: Since $|G|$ is even, by Exercise 3.1.26 there is at least one element of order 2. Suppose that $|G|=6$ and every element of G has order 2. Let $a, b \in G$, $a \neq b, a \neq e, b \neq e$. Then $a^{2}=b^{2}=e$, so $a b=e$ implies $b \neq a$. Thus $a b \neq e$, so $o(a b)=2$ and then $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$. Hence $H=\{e, a, b, a b\}$ is a subgroup of G of order 4, contradicting Lagrange's theorem.
20. Let G be a group of order 6 , and suppose that $a, b \in G$ with a of order 3 and b of order 2 . Show that either G is cyclic or $a b \neq b a$.

Solution: Let $a, b \in G$, with $o(a)=3$ and $o(b)=2$. We claim that G is cyclic iff $a b=b a$. If $a b=b a$, then $o(a b)=\operatorname{lcm}[2,3]=6$ and $G=\langle a b\rangle$ is cyclic. If $a b \neq b a$, then G is not abelian and hence not cyclic.
21. Let G be any group of order 6 . Show that if G is not cyclic, then its multiplication table must look like that of S_{3}.

Solution: By Exercises 19 and 20, if G is not cyclic then there exist an element a of order 3 and an element b of order 2 such that $a b \neq b a$. Now the elements e, a, a^{2}, b are all distinct. By cancellation $a b \neq a, a b \neq a^{2}$, and $a b \neq b$, and since $a^{-1}=a^{2} \neq b$ we have $a b \neq e$. Thus $e, a, a^{2}, b, a b$ are all distinct. Again by cancellation $a^{2} b \neq a, a^{2} b \neq a^{2}, a^{2} b \neq a b$, and $a^{2} b \neq b$. We also have $a^{2} \neq b$, so $a^{2} b \neq e$. Thus $G=\left\{e, a, a^{2}, b, a b, a^{2} b\right\}$.

What is $b a$? By cancellation $b a \neq a, b a \neq a^{2}$, and $b a \neq b$. Since $b \neq a^{2}$, we have $b a \neq e$. By assumption $b a \neq a b$. By elimination $b a=a^{2} b$. We can now complete the multiplication table for G.

\cdot	e	a	a^{2}	b	$a b$	$a^{2} b$
e	e	a	a^{2}	b	$a b$	$a^{2} b$
a	a	a^{2}	e	$a b$	$a^{2} b$	b
a^{2}	a^{2}	e	a	$a^{2} b$	b	$a b$
b	b	$a^{2} b$	$a b$	e	a^{2}	a
$a b$	$a b$	b	$a^{2} b$	a	e	a^{2}
a^{b}	$a^{2} b$	$a b$	b	a^{2}	a	e

3.4. Isomorphisms

12. For the field F, let $H=\left\{\left.\left[\begin{array}{ll}1 & 0 \\ c & d\end{array}\right] \right\rvert\, c, d \in F, d \neq 0\right\} \subseteq \operatorname{GL}_{2}(F)$.
(b) Show that $K=\left\{\left.\left[\begin{array}{cc}m & b \\ 0 & 1\end{array}\right] \right\rvert\, m, b \in F, \quad m \neq 0\right\}$ is a subgroup of $\mathrm{GL}_{2}(F)$ that is isomorphic to H.
Solution: Let $a=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \in \mathrm{GL}_{2}(F)$. Then for $\left[\begin{array}{ll}1 & 0 \\ c & d\end{array}\right] \in H$ we have
$a\left[\begin{array}{ll}1 & 0 \\ c & d\end{array}\right] a^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}c & d \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}d & c \\ 0 & 1\end{array}\right]$.
This makes it clear that $a \mathrm{Ha}^{-1}=K$, so K is a subgroup by Example 3.2.13, and then $H \cong a H a^{-1}=K$ by Example 3.4.3.
13. Define $*$ on \mathbf{R} by $a * b=a+b-1$, for all $a, b \in \mathbf{R}$. (See Exercise 13 of Section 3.1.) Show that the group $G=(\mathbf{R}, *)$ is isomorphic to the group $(\mathbf{R},+)$.
Discussion: Since we need a one-to-one mapping from \mathbf{R} to \mathbf{R}, is it possible that one of the simplest cases, a linear function of the form $\phi(x)=m x+b$, might work? Of course, we need $m \neq 0$ to make certain that ϕ is a one-to-one correspondence. Since the solution to Exercise 13 of Section 3.1 shows that 1 is the identity element of G, and since 0 is the identity element of \mathbf{R}, we would need to have $\phi(1)=0$, which forces $b=-m$.
Solution: For any $0 \neq m \in \mathbf{R}$, define $\phi: G \rightarrow \mathbf{R}$ by $\phi(x)=m x-m$, for all $x \in G$. It is clear that ϕ is one-to-one and onto since $m \neq 0$. For all $a, b \in G$ we have $\phi(a * b)=\phi(a+b-1)=m(a+b-1)-m=m a+m b-2 m$ and $\phi(a)+\phi(b)=(m a-m)+(m b-m 1)=m a+m b-2 m$, so $\phi(a * b)=\phi(a)+\phi(b)$. Thus ϕ respects the operations in the two groups, and so ϕ does indeed define an isomorphism from $(G, *)$ onto $(\mathbf{R},+)$.
Note: We have actually shown that there are infinitely many different possible isomorphisms. Of course, the simplest case would be to let $m=1$ and just use $\theta(x)=x-1$. Then we can write ϕ as a composite function $\psi \theta$, where $\psi(x)=m x$ defines an isomorphism from $(\mathbf{R},+)$ onto itself.

3.5. Cyclic Groups

13. Show that in a finite cyclic group of order n, the equation $x^{m}=e$ has exactly m solutions, for each positive integer m that is a divisor of n.
Solution: Let $G=\langle a\rangle$, where $o(a)=n$. If $m \mid n$ then $n=m k$ for some $k \in \mathbf{Z}$. We have $o\left(a^{k}\right)=\frac{n}{(k, n)}=\frac{n}{k}=m$, and so $\left\{e, a^{k}, a^{2 k}, \ldots, a^{(m-1) k}\right\}$ consists of m
distinct solutions of $x^{m}=e$. Suppose that c is a solution to $x^{m}=e$. Then $c=a^{j}$ for some j, and $o(c)=\frac{n}{(j, n)}$, where $\left.\frac{n}{(j, n)} \right\rvert\, m$. Thus there exists a positive integer t such that $n t=m(j, n)$. Then $m k t=m(j, n)$ and so $(j, n)=k t$. Since $(j, n) \mid j$ we have $j=k \cdot t \cdot r$ for some positive integer r. Thus $c=a^{j}=a^{k \cdot t r}$ and so $c \in\left\{e, a^{k}, a^{2 k}, \ldots, a^{(m-1) k}\right\}$.
14. Let G be a finite group, and suppose that for any two subgroups H and K either $H \subseteq K$ or $K \subseteq H$. Prove that G is cyclic of prime power order.
Solution: Since G is finite, it has an element of maximal order, say a. Then $\langle a\rangle$ cannot be properly contained in any other cyclic subgroup, so it follows that $\langle b\rangle \subseteq\langle a\rangle$ for every $b \in G$. Thus every element of G is a power of a, and so G is cyclic, with $G=\langle a\rangle$. Suppose that $|G|$ has two distinct prime divisors p and q. By hypothesis we have either $\left\langle a^{p}\right\rangle \subseteq\left\langle a^{q}\right\rangle$ or $\left\langle a^{q}\right\rangle \subseteq\left\langle a^{p}\right\rangle$. But then Corollary 3.5.4 (c) implies that either $q \mid p$ or $p \mid q$, a contradiction. We conclude that G is cyclic of prime power order.
15. Prove that if p and q are different odd primes, then $\mathbf{Z}_{p q}^{\times}$is not a cyclic group.

Solution: We know that $[-1]_{p q}$ has order 2, so by Exercise 13 it is enough to find one other element of order 2. The Chinese remainder theorem (Theorem 1.3.6) states that the system of congruences $x \equiv 1(\bmod p)$ and $x \equiv-1(\bmod q)$ has a solution $[a]_{p q}$, since p and q are relatively prime. Because p is an odd prime, $[-1]_{p q}$ is not a solution, so $[a]_{p q} \neq[-1]_{p q}$. But $a^{2} \equiv 1(\bmod p)$ and $a^{2} \equiv 1(\bmod q)$, so $a^{2} \equiv 1(\bmod p q)$ since p and q are relatively prime. Thus $[a]_{p q}$ has order 2.

3.6. Permutation Groups

21. In the dihedral group $D_{n}=\left\{a^{i} b^{j} \mid 0 \leq i<n, 0 \leq j<2\right\}$ with $o(a)=n$, $o(b)=2$, and $b a=a^{-1} b$, find the centralizer $C(a)=\left\{x \in D_{n} \mid x a=a x\right\}$.
Solution: The centralizer $C(a)$ contains all powers of a, so we have $\langle a\rangle \subseteq C(a)$. This shows that $C(a)$ has at least n elements. On the other hand, $C(a) \neq D_{n}$, since by definition b does not belong to $C(a)$. Since $\langle a\rangle$ contains exactly half of the elements in D_{n}, Lagrange's theorem show that there is no subgroup that lies strictly between $\langle a\rangle$ and D_{n}, so $\langle a\rangle \subseteq C(a) \subseteq D_{n}$ and $C(a) \neq D_{n}$ together imply that $C(a)=\langle a\rangle$.
22. Find the center of the dihedral group D_{n}.

Solution: Let $n \geq 3$. Then $D_{n}=\left\{a^{j}, a^{j} b \mid 0 \leq j<n\right\}$ with $a^{n}=b^{2}=e$ and $b a=a^{n-1} \bar{b}$. By induction we have $b a^{j}=a^{n-j} b$. Now if $x=a^{j} b$ then $x a=a^{j} b a=a^{j+n-1} b$ and $a x=a^{j+1} b$. Hence $x a=a x$ if and only if
$j+n-1 \equiv j+1(\bmod n)$, and this happens if and only if $n=2$. Hence $x=a^{j} b$ is never central.

Now let $x=a^{j}$. Since x commutes with all powers of a, it will be central if $x b=b x$. But $b x=b a^{j}=a^{n-j} b=a^{j} b$ if and only if $n-j \equiv j(\bmod n)$. This holds for $0 \leq j<n$ only if $j=0$ or $j=m$ when $n=2 m$. Thus if $n=2 m$, then $Z\left(D_{n}\right)=\left\{e, a^{m}\right\}$ and if n is odd, then $Z\left(D_{n}\right)=\{e\}$.

3.7. Homomorphisms

6. Let n and m be positive integers, such that m is a divisor of n. Show that $\phi: \mathbf{Z}_{n}^{\times} \rightarrow \mathbf{Z}_{m}^{\times}$defined by $\phi\left([x]_{n}\right)=[x]_{m}$, for all $[x]_{n} \in \mathbf{Z}_{n}^{\times}$, is a well-defined group homomorphism.
Solution: First, ϕ is a well-defined function by Exercise 11 of Section 2.1. Next, ϕ is a homomorphism since for $[a]_{n},[b]_{n} \in \mathbf{Z}_{n}^{\times}$, we have $\phi\left([a]_{n}[b]_{n}\right)=\phi\left([a b]_{n}\right)=$ $[a b]_{m}=[a]_{m}[b]_{m}=\phi\left([a]_{n}\right) \phi\left([b]_{n}\right)$.
7. Define $\phi: \mathbf{R} \rightarrow \mathbf{C}^{\times}$by setting $\phi(\theta)=e^{i \theta}$, for all $\theta \in \mathbf{R}$. Use this version of the formula in Example 3.7.11 to show that ϕ is a group homomorphism.
Solution: We need to be careful, since the operation in the first group is addition, and in the second it is multiplication. If $\theta_{1}, \theta_{2} \in \mathbf{R}$, then $\phi\left(\theta_{1}+\theta_{2}\right)=e^{i\left(\theta_{1}+\theta_{2}\right)}=$ $e^{i \theta_{1}+i \theta_{2}}=e^{i \theta_{1}} e^{i \theta_{2}}=\phi\left(\theta_{1}\right) \phi\left(\theta_{2}\right)$, and so ϕ preserves the respective operations.
8. Prove that $\mathrm{SL}_{n}(\mathbf{R})$ is a normal subgroup of $\mathrm{GL}_{n}(\mathbf{R})$.

Solution: First, $\mathrm{SL}_{n}(\mathbf{R})$ is a subgroup of $\mathrm{GL}_{n}(\mathbf{R})$ since it contains the identity matrix, and if $A, B \in \operatorname{SL}_{n}(\mathbf{R})$, then $\operatorname{det}(A)=\operatorname{det}(B)=1$, so $\operatorname{det}\left(A B^{-1}\right)=$ $\operatorname{det}(A) \operatorname{det}\left(B^{-1}\right)=1$, and thus $A B^{-1} \in \operatorname{SL}_{n}(\mathbf{R})$.

If $A \in \mathrm{SL}_{n}(\mathbf{R})$ and $P \in \mathrm{GL}_{n}(\mathbf{R})$, then $\operatorname{det}\left(P A P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(A) \operatorname{det}\left(P^{-1}\right)$ $=\operatorname{det}(P) \cdot 1 \cdot \frac{1}{\operatorname{det}(P)}=1$, so $P A P^{-1} \in \operatorname{SL}_{n}(\mathbf{R})$, showing that $\operatorname{SL}_{n}(\mathbf{R})$ is normal in $\mathrm{GL}_{n}(\mathbf{R})$

Alternate solution: Here is a slightly more sophisticated proof. Example 3.7.1 shows that the determinant defines a group homomorphism. After observing that $\mathrm{SL}_{n}(\mathbf{R})$ is the kernel of the determinant homomorphism from $\mathrm{GL}_{n}(R)$ into \mathbf{R}, the result follows from Proposition 3.7.4 (a) (which shows that the kernel of any group homomorphism is a normal subgroup).
24. Let G_{1}, \ldots, G_{n} be groups, for $n \in \mathbf{Z}^{+}$, and let $G=\left\{\left(g_{1}, \ldots, g_{n}\right) \mid g_{i} \in G_{i}\right\}$ be the group of n-tuples with entries in G_{i}.
(a) Define $\theta_{i}: G_{i} \rightarrow G$ by $\theta_{i}\left(g_{i}\right)=\left(e_{1}, \ldots, e_{i-1}, g_{i}, e_{i+1}, \ldots, e_{n}\right)$, where $g_{i} \in$ G_{i} and e_{j} is the identity element of G_{j}. Show that θ_{i} is a group homomorphism
and $H_{i}=\theta_{i}\left(G_{i}\right)=\left\{\left(e_{1}, \ldots, g_{i}, \ldots, e_{n}\right) \mid g_{i} \in G_{i}\right\}$ is a subgroup of G with $H_{i} \cong G_{i}$.

Solution: Since $\theta_{i}\left(a_{i} b_{i}\right)=\left(e_{1}, \ldots, a_{i} b_{i}, \ldots, e_{n}\right)=$
$\left(e_{1}, \ldots, a_{i}, \ldots, e_{n}\right)\left(e_{1}, \ldots, b_{i}, \ldots, e_{n}\right)=\theta_{i}\left(a_{i}\right) \theta_{i}\left(b_{i}\right)$ for $a_{i}, b_{i} \in G_{i}$, it follows that θ_{i} is a group homomorphism, and then $H_{i}=\theta_{i}\left(G_{i}\right)$ is a subgroup of G by Proposition 3.7.6. It is clear that θ_{i} is one-to-one and maps G_{i} onto H_{i}.
(b) Show that $G=H_{1} H_{2} \cdots H_{n}$, that elements of H_{i} and H_{j} commute, for all $1 \leq i<j \leq n$, and that $H_{i} \cap H_{1} \cdots H_{i-1} H_{i+1} \cdots H_{n}=\{e\}$, for all $1 \leq i \leq n$.

Solution: We have $\left(g_{1}, . ., g_{i}, . ., g_{n}\right)=$
$\left(g_{1}, . ., e_{i}, . ., e_{n}\right) \cdots\left(e_{1}, . ., g_{i}, . ., e_{n}\right) \cdots\left(e_{1}, . ., e_{i}, . ., g_{n}\right)$ and $\left(e_{1}, . ., g_{i}, . ., e_{j}, \ldots, e_{n}\right)\left(e_{1}, \ldots, e_{i}, . ., g_{j}, . ., e_{n}\right)=\left(e_{1}, . ., g_{i}, . ., g_{j}, . ., e_{n}\right)=$
$\left(e_{1}, \ldots, e_{i}, \ldots, g_{j}, . ., e_{n}\right)\left(e_{1}, . ., g_{i}, \ldots, e_{j}, \ldots, e_{n}\right)$ for all $g_{i} \in G_{i}$ and $g_{j} \in G_{j}$. In each element of the product $H_{1} \cdots H_{i-1} H_{i+1} \cdots H_{n}$, the i th entry is e_{i}, and so the intersection with H_{i} is $\left(e_{1}, . ., e_{i}, . ., e_{n}\right)$.
(c) For all $\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, \ldots, g_{n}\right) \in G$, define $\pi_{i}: G \rightarrow G_{i}$ by setting $\pi_{i}\left(\left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1}, \ldots, g_{n}\right)\right)=g_{i}$. Show that π_{i} is a group homomorphism with kernel $H_{1} \cdots H_{i-1} H_{i+1} \cdots H_{n}$.
Solution: We have $\pi_{i}\left(\left(a_{1}, . ., a_{i}, . ., a_{n}\right)\left(b_{1}, . ., b_{i}, . ., b_{n}\right)\right)=$ $\pi_{i}\left(\left(a_{1} b_{1}, . ., a_{i} b_{i}, . ., a_{n} b_{n}\right)\right)=a_{i} b_{i}=\pi_{i}\left(\left(a_{1}, . ., a_{i}, . ., a_{n}\right)\right) \pi_{i}\left(\left(b_{1}, . ., b_{i}, . ., b_{n}\right)\right)$, for all $a_{j}, b_{j} \in G_{j}$, and so π_{i} is a group homomorphism. We have $\pi_{i}\left(\left(g_{1}, \ldots, g_{i}, . ., g_{n}\right)\right)=e_{i}$ if and only if $g_{i}=e_{i}$, and so it is clear that $\operatorname{ker}\left(\pi_{i}\right)$ is the product of the other subgroups H_{j}, with H_{i} omitted.
(d) Show that $\pi_{i} \circ \theta_{i}=1_{G_{i}}$, for $1 \leq i \leq n$.

Solution: We have $\left(\pi_{i} \circ \theta_{i}\right)\left(g_{i}\right)=\pi_{i}\left(\theta_{i}\left(g_{i}\right)\right)=$
$\pi_{i}\left(\left(e_{1}, \ldots, e_{i-1}, g_{i}, e_{i+1}, \ldots, e_{n}\right)\right)=g_{i}$, for $g_{i} \in G_{i}$.
(e) Define $\psi: G \rightarrow G$ by $\psi(g)=\left(\theta_{1} \pi_{1}(g)\right)\left(\theta_{2} \pi_{2}(g)\right) \cdots\left(\theta_{n} \pi_{n}(g)\right)$, for all $g \in G$. Show that $\psi=1_{G}$, and that if $\sigma \in S_{n}$, then for all $g \in G$ we have $\psi(g)=\left(\theta_{\sigma(1)} \pi_{\sigma(1)}(g)\right)\left(\theta_{\sigma(2)} \pi_{\sigma(2)}(g)\right) \cdots\left(\theta_{\sigma(n)} \pi_{\sigma(n)}(g)\right)$,
Solution: We have $\theta_{i} \pi_{i}(g)=\theta_{i}\left(g_{i}\right)=\left(e_{1}, \ldots, e_{i-1}, g_{i}, e_{i+1}, \ldots, e_{n}\right)$, for any element $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in G$. The product of the elements $\theta_{i} \pi_{i}(g)$, over all $1 \leq i \leq n$, yields g, and so $\psi(g)=g$. Since the elements $\theta_{i} \pi_{i}(g)$ and $\theta_{j} \pi_{j}(g)$ commute, the product over all i can be taken in any order.
(f) Let G^{\prime} be a group. Show that given group homomorphisms $\phi_{i}: G^{\prime} \rightarrow G_{i}$, for $1 \leq i \leq n$, there exists a unique group homomorphism $\phi: G^{\prime} \rightarrow G$ such that $\pi_{i} \phi=\phi_{i}$, for $1 \leq i \leq n$.
Solution: Suppose that group homomorphisms $\phi_{i}: G^{\prime} \rightarrow G_{i}$ are given, for $1 \leq$ $i \leq n$. For $x \in G^{\prime}$, restating the condition $\pi_{i} \phi=\phi_{i}$ shows that the i th component of $\phi(x)$ must be $\phi_{i}(x)$, so the only way to define $\phi: G^{\prime} \rightarrow G$ is by setting
$\phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x)\right)$. But does this define a group homomorphism? Yes, since for $a, b \in G^{\prime}$ we have

$$
\begin{aligned}
\phi(a b) & =\left(\phi_{1}(a b), \ldots, \phi_{i}(a b), \ldots, \phi_{n}(a b)\right) \\
& =\left(\phi_{1}(a) \phi_{1}(b), \ldots, \phi_{i}(a) \phi_{i}(b), \ldots, \phi_{n}(a) \phi_{n}(b)\right) \\
& =\left(\phi_{1}(a), \ldots, \phi_{i}(a), \ldots, \phi_{n}(a)\right)\left(\phi_{1}(b), \ldots, \phi_{i}(b), \ldots, \phi_{n}(b)\right) \\
& =\phi(a) \phi(b)
\end{aligned}
$$

3.8. Cosets, Normal Subgroups, and Factor Groups

5. Use Example 3.8.1 and the parity mapping defined in Example 3.7.8 to give a short proof that in any subgroup H of S_{n}, either all permutations in H are even, or else half of the permutations in H are even and half are odd.

Solution: Let $\phi: S_{n} \rightarrow\{ \pm 1\}$ be the homomorphism defined in Example 3.7.8, which maps even permutations to 1 and odd permutations to -1 . Define $\theta: H \rightarrow$ $\{ \pm 1\}$ to be the inclusion mapping followed by ϕ. Since θ is the composite of two homomorphisms, it is a homomorphism. Then either θ is the trivial mapping, in which case every permutation in H is even, or else there are two cosets of the kernel: the set of even permutations in H and the set of odd permutations in H. This completes the proof, since by Example 3.8.1 both cosets have the same number of elements.
16. Let G_{1}, G_{2}, G_{3} be groups such that G_{1} is a homomorphic image of both G_{2} and G_{3}. If $\left|G_{2}\right|=24$ and $\left|G_{3}\right|=30$, list the possibilities for G_{1} (up to isomorphism).

Solution: The order of G_{1} must be a common divisor of 24 and 30 , so it is a divisor of 6. Thus G_{1} is isomorphic to one of the groups on this list: the trivial one-element group, $\mathbf{Z}_{2}, \mathbf{Z}_{3}, \mathbf{Z}_{6}$, or S_{3}. Recall that by Exercise 21 of Section 3.3 any group of order 6 is either cyclic or isomorphic to the symmetric group S_{3}.

4 POLYNOMIALS

4.1. Fields; Roots of Polynomials

7. Prove that if p is a prime number, then the multiplicative group \mathbf{Z}_{p}^{\times}is cyclic.

Solution: We will use Proposition 3.5.9 (b), which states that a finite abelian group is cyclic if and only if its exponent is equal to its order. Suppose that the exponent of \mathbf{Z}_{p}^{\times}is m. Then $a^{m}=1$ for all nonzero $a \in \mathbf{Z}_{p}^{\times}$, and so the polynomial $x^{m}-1$ has $p-1$ distinct roots in \mathbf{Z}_{p}^{\times}, and it follows from Corollary 4.1.12 that $p-1 \leq m$. By definition, $m \leq p-1=\left|\mathbf{Z}_{p}^{\times}\right|$, so $m=\left|\mathbf{Z}_{p}^{\times}\right|$and therefore \mathbf{Z}_{p}^{\times}is cyclic.
8. Let p be a prime number, and let $a, b \in \mathbf{Z}_{p}^{\times}$. Show that if neither a nor b is a square, then $a b$ is a square.
Solution: By Exercise 7, we can choose a generator g for \mathbf{Z}_{p}^{\times}. If neither a nor b is a square, then $a=g^{s}$ and $b=g^{t}$, where s and t are odd. Therefore $a b=\left(g^{k}\right)^{2}$, where $s+t=2 k$, and so $a b$ is a square.

4.2. Factors

12. Find the irreducible factors of $2 x^{3}+x^{2}+2 x+2$ over \mathbf{Z}_{5}.

Solution: We first factor out 2 , using $(2)(-2)=-4 \equiv 1(\bmod 5)$. This reduces the question to factoring $p(x)=x^{3}-2 x^{2}+x+1$. Checking for roots shows that $p(0)=1, p(1)=1, p(-1)=-3, p(2)=3$, and $p(-2) \equiv-2$, so $p(x)$ has no roots in \mathbf{Z}_{5}. Then $p(x)$ is irreducible over \mathbf{Z}_{5} by Proposition 4.2.7.
15. Show that $x^{4}+1$ has a proper factorization over \mathbf{Z}_{p}, for all primes p.

Solution: We will show that $x^{4}+1$ can always be factored as the product of two quadratic polynomials.

If $p=2$, then $x^{4}+1=\left(x^{2}+1\right)^{2}$.
If $p=3$, then $x^{4}+1=\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)$. (See the answer to Exercise 14 (d).)

If $p \geq 5$, then \mathbf{Z}_{p} contains the elements $-1, \pm 2$. Exercise 8 of Section 4.1 shows that if neither -1 nor 2 is a square, then their product -2 must be a square.

If -1 is a square, say $a^{2}=-1$, then $x^{4}+1=\left(x^{2}+a\right)\left(x^{2}-a\right)$. If 2 is a square, say $a^{2}=2$, then $x^{4}+1=\left(x^{2}+a x+1\right)\left(x^{2}-a x+1\right)$. If -2 is a square, say $a^{2}=-2$, then $x^{4}+1=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)$.

This completes the proof.
Comments: The proof gives no idea as to how we arrived at these factorizations. As motivation, we offer the following discussion. Since $x^{4}+1$ is monic, we can
assume that its factors are monic. Suppose we have a factorization $x^{4}+1=$ $\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$. Looking at the coefficients of x^{3} and x, we see that $c=-a$, and then $a d=a b$. If $a=0$, then $x^{4}+1=\left(x^{2}+b\right)\left(x^{2}+d\right)$, forcing $d=-b$ and so the only possible factorization is $x^{4}+1=\left(x^{2}+b\right)\left(x^{2}-b\right)$, with $b^{2}=-1$.

If $a \neq 0$, then cancelling yields $d=b$, forcing $b= \pm 1$ since $b^{2}=1$. In this case the factorization must be $x^{4}+1=\left(x^{2}+a x+1\right)\left(x^{2}-a x+1\right)$ or $x^{4}+1=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)$.

4.3. Existence of Roots

2. Prove Proposition 4.3.4.

Solution: (a) Given that $a(x) \equiv c(x)(\bmod p(x))$ and $b(x) \equiv d(x)(\bmod p(x))$, it follows that $p(x) \mid(a(x)-c(x))$ and $p(x) \mid(b(x)-d(x))$. Therefore
$p(x) \mid(a(x)-c(x)+b(x)-d(x))$, and so $p(x) \mid((a(x)+b(x))-(c(x)+d(x)))$. Hence $a(x)+b(x) \equiv c(x)+d(x)(\bmod p(x))$. Furthermore,
$a(x) b(x)-c(x) d(x)=a(x)(b(x)-d(x))+d(x)(a(x)-c(x))$ implies that $p(x) \mid(a(x) b(x)-c(x) d(x))$. Hence $a(x) b(x) \equiv c(x) d(x)(\bmod p(x))$.
(b) Since $\operatorname{gcd}(a(x), p(x))=1$, there exist polynomials $f(x)$ and $g(x)$ such that $f(x) a(x)+g(x) p(x)=1$. Since $a(x) b(x) \equiv a(x) c(x)(\bmod p(x))$, we have $p(x) \mid(a(x) b(x)-a(x) c(x))$. Now $b(x)-c(x)=f(x) a(x) b(x)+g(x) p(x) b(x)-f(x) a(x) c(x)-g(x) p(x) c(x)$

$$
=f(x)(a(x) b(x)-a(x) c(x))+p(x)(g(x) b(x)-g(x) c(x))
$$

Since $p(x) \mid a(x) b(x)-a(x) c(x)$, we have $p(x) \mid(b(x)-c(x))$, and therefore $b(x) \equiv c(x)(\bmod p(x))$.
17. Prove that the set of all matrices over \mathbf{Z}_{3} of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ is a field isomorphic to $\mathbf{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$.

Solution: Let F be the given set of matrices, and note that F has 9 elements. The formulas in Appendix A.5, although given for matrices with entries in \mathbf{R}, remain valid for matrices with entries in \mathbf{Z}_{3}. It is then easy to check that F is closed under addition and multiplication, has a zero element and additive inverses, has a multiplicative identity, and satisfies the associative, distributive, and commutative laws. For a matrix in F, if $a \neq 0$ and $b=0$, then $a^{2}+b^{2}=1$; if $a=0$ and $b \neq 0$, then $a^{2}+b^{2}=1$; if $a \neq 0$ and $b \neq 0$, then $a^{2}+b^{2}=2$. Thus the nonzero matrices in F are invertible, since they have a nonzero determinant, and so F is a field.

Define $\phi: \mathbf{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle \rightarrow F$ by $\phi([a+b x])=a\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+b\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. The mapping is well-defined since each congruence class in $\mathbf{Z}_{3}[x] /\left\langle x^{2}+1\right\rangle$ contains a unique representative of the form $a+b x$, and simply listing the possible values of ϕ shows it to be a one-to-one correspondence. It is clear that ϕ will preserve addition. That ϕ preserves multiplication depends on the fact that the congruence class $[x]$, which satisfies the equation $[x]^{2}=-[1]$, maps to the matrix $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$, which satisfies the corresponding equation $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]^{2}=-\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
20. Find all powers of $[x]$ in $\mathbf{Z}_{3}[x] /\left(x^{2}+x+2\right)$, and then find $[x]^{-1}$.

Solution: Since $x^{2} \equiv-x-2 \equiv 2 x+1\left(\bmod x^{2}+x+2\right)$, we have the following list:

$$
\begin{aligned}
& {[x]^{1}=[x],} \\
& {[x]^{2}=[2 x+1],} \\
& \left.[x]^{3}=[x][2 x+1]=\left[2 x^{2}+x\right]=[4 x+2+x)\right]=[2 x+2], \\
& {[x]^{4}=[x][2 x+2]=\left[2 x^{2}+2 x\right]=[4 x+2+2 x]=[2]=[-1],} \\
& {[x]^{5}=[-1][x]=[2 x],} \\
& {[x]^{6}=[-1]\left[x^{2}\right]=[x+2],} \\
& \left.[x]^{7}=[-1][x]\right]^{3}=[x+1], \\
& {[x]^{8}=\left([x]^{4}\right)^{2}=[1] .}
\end{aligned}
$$

Since $[x]$ has order 8 in the multiplicative group of the field, its inverse is $[x]^{7}=$ $[x+1]$.
Comment: Each nonzero element of $\mathbf{Z}_{3} /\left\langle x^{2}+x-1\right\rangle$ is a power of $[x]$, so we have shown that the multiplicative group of this finite field is cyclic, with generator $[x]$.

4.4. Polynomials over $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$, and \mathbf{C}

1. Let $f(x), g(x) \in \mathbf{Z}[x]$, and suppose that $g(x)$ is monic. Show that there exist unique polynomials $q(x), r(x) \in \mathbf{Z}[x]$ with $f(x)=q(x) g(x)+r(x)$, where either $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.
Solution: Let $f(x)=a_{m} x^{m}+\ldots+a_{1} x+a_{0}$, and $g(x)=x^{n}+\ldots+b_{0}$, where $a_{m} \neq 0$. If $f(x)$ has lower degree than $g(x)$, then $q(x)=0$ and $r(x)=f(x)$ satisfy the requirements. The proof of the other case will use induction on the degree of $f(x)$.

If $f(x)$ has degree zero, it is easy to see that the theorem holds. In order to appeal to the second principle of mathematical induction, assume that the theorem is true for all polynomials $f(x)$ of degree less than m. (We are assuming that $m \geq n$.) The reduction to a polynomial of lower degree is achieved by using the procedure
outlined in Example 4.2.1. We divide $a_{m} x^{m}$ by x^{n} to get $a_{m} x^{m-n}$, then multiply by $g(x)$ and subtract from $f(x)$. This gives $f_{1}(x)=f(x)-a_{m} x^{m-n} g(x)$, where $f_{1}(x)$ has degree less than m since the leading term of $f(x)$ has been cancelled by $a_{m} x^{m-n} x^{n}$. Now by the induction hypothesis there exist $q_{1}(x), r(x) \in \mathbf{Z}[x]$ such that $f_{1}(x)=q_{1}(x) g(x)+r(x)$, where the degree of $r(x)$ is less than n, unless $r(x)=0$. Since $f(x)=f_{1}(x)+a_{m} x^{m-n} g(x)$, substitution gives the desired result:

$$
f(x)=\left(q_{1}(x)+a_{m} x^{m-n}\right) g(x)+r(x) .
$$

The quotient $q(x)=q_{1}(x)+a_{m} x^{m-n}$ has coefficients in \mathbf{Z}, since $a_{m} \in \mathbf{Z}$ and $q_{1}(x) \in \mathbf{Z}[x]$. The proof that the quotient $q(x)$ and remainder $r(x)$ are unique follows exactly as in the proof of Theorem 4.2.1.

5 RINGS

5.1. Commutative Rings; Integral Domains

8. Let R be a commutative ring, and let $f(x), g(x) \in R[x]$, where $g(x)$ is monic. Show that there exist unique polynomials $q(x), r(x) \in R[x]$ such that $f(x)=$ $q(x) g(x)+r(x)$, where $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.
Solution: Let $f(x)=a_{m} x^{m}+\ldots+a_{1} x+a_{0}$ and $g(x)=x^{n}+b_{n-1} x^{n-1}+\ldots+b_{0}$, where $a_{m} \neq 0$. In the proof of Theorem 4.2.1, the induction step uses the polynomial $f_{1}(x)=f(x)-a_{m} b_{n}^{-1} x^{m-n} g(x)$, where b_{n} is the leading coefficient of $g(x)$. In this case $g(x)$ is monic, so $b_{n}=1$, and we can use the polynomial $f_{1}(x)=f(x)-a_{m} x^{m-n} g(x)$ instead.

The next difficulty arises in showing that the quotient $q(x)$ and remainder $r(x)$ are unique. The proof of Theorem 4.2.1 uses Proposition 4.1.5, which does hold if R is an integral domain (by Example 5.1.8) but may fail in general. If $f(x)=$ $q_{1}(x) g(x)+r_{1}(x)$ and $f(x)=q_{2}(x) g(x)+r_{2}(x)$, then $\left(q_{1}(x)-q_{2}(x)\right) g(x)=$ $r_{2}(x)-r_{1}(x)$, as in the proof of Theorem 4.2.1. If $q_{2}(x)-q_{1}(x) \neq 0$, then the degree of $\left(q_{2}(x)-q_{1}(x)\right) g(x)$ is greater than or equal to the degree of $g(x)$ because $g(x)$ is monic. The degree of $r_{2}(x)-r_{1}(x)$ is less than the degree of $g(x)$, so we still reach a contradiction, completing the proof.

5.2. Ring Homomorphisms

6. Show that the ring of Gaussian integers $\mathbf{Z}[i]$ defined in Example 5.1.5 is isomorphic to $\mathbf{Z}[x] /\left\langle x^{2}+1\right\rangle$.
Solution: Define $\phi: \mathbf{Z}[x] \rightarrow \mathbf{C}$ by $\phi(f(x))=f(i)$, for all $f(x) \in \mathbf{Z}[x]$. This is the mapping defined in Proposition 5.2.7, and so we know that it is a ring homomorphism. It is clear that $\phi(\mathbf{Z}[x])=\mathbf{Z}[i]$ and that $x^{2}+1 \in \operatorname{ker}(\phi)$.

To show that $\operatorname{ker}(\phi)=\left\langle x^{2}+1\right\rangle$, suppose that $f(x) \in \operatorname{ker}(\phi)$. Considering $f(x)$ as an element of $\mathbf{Q}[x]$, we can divide by $x^{2}+1$ to get $f(x)=q(x)\left(x^{2}+1\right)+r(x)$, where $r(x)=0$ or $\operatorname{deg}(r(x))<2$. Since $x^{2}+1$ is monic, it follows from Exercise 1 of Section 4.4 that $q(x)$ and $r(x)$ belong to $\mathbf{Z}[x]$, so $r(x)=m+n x$ for some $m, n \in \mathbf{Z}$. Substituting $x=i$ shows that $m+n i=0$ in \mathbf{C}, so $m=n=0$, and therefore $r(x)$ is the zero polynomial. Thus we have shown that $f(x) \in\left\langle x^{2}+1\right\rangle$.

Since $\operatorname{ker}(\phi)=\left\langle x^{2}+1\right\rangle$ and $\phi(\mathbf{Z}[x])=\mathbf{Z}[i]$, it follows from the fundamental homomorphism theorem that $\mathbf{Z}[i] \cong \mathbf{Z}[x] /\left\langle x^{2}+1\right\rangle$.
8. Let F be the field $\mathbf{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$ defined in Example 4.3.4. Show that F has precisely two automorphisms.

Solution: Any automorphism maps 0 to 0 and 1 to 1 . Using the congruence classes given in Example 4.3.4, the only possibility to define an automorphism $\phi: F \rightarrow F$ that is not the identity mapping is to define $\phi([x])=[1+x]$ and $\phi([1+x])=[x]$. To show that this defines an automorphism, note that $[1+x]=\left[x^{2}\right]=[x]^{2}$, and consider the formula $\theta(r)=r^{2}$, for all $r \in F$. Then $\theta(0)=0$ and $\theta(1)=1$, $\theta([x])=[x]^{2}=[1+x]$, and $\theta([1+x])=[1+x]^{2}=[x]$, by the multiplication table given in Example 4.3.4. For $r, s \in F$, we have $\theta(r s)=(r s)^{2}=r^{2} s^{2}=\theta(r) \theta(s)$. We also have $\theta(r+s)=(r+s)^{2}=r^{2}+2 r s+s^{2}$. But since $[1]+[1]=[0]$, the field F has characteristic 2, so we have $2 r s=0$. Thus $\theta(r+s)=\theta(r)+\theta(s)$, verifying that $\phi=\theta$ is the second automorphism of F.

Looking ahead: The mapping θ is a special case of the Frobenius automorphism introduced in Definition 8.1.8.

5.3. Ideals and Factor Rings

11. Show that if R is a Boolean ring, then every prime ideal of R is maximal.

Solution: We will prove a stronger result: if R is a Boolean ring and P is a prime ideal of R, then $R / P \cong \mathbf{Z}_{2}$. Since \mathbf{Z}_{2} is a field, Proposition 5.3 .9 (a) implies that P is a maximal ideal.

If $a \in R$, then $a^{2}=a$, and so $a(a-1)=0$. Since P is an ideal, it contains 0 , and then $a(a-1) \in P$ implies $a \in P$ or $a-1 \in P$, since P is prime. Thus each element of R is in either P or $1+P$, so there are only two cosets of P in R / P, and therefore R / P must be the ring \mathbf{Z}_{2}.
17. Let I, J be ideals of the commutative ring R, and for $r \in R$, define the function $\phi: R \rightarrow R / I \oplus R / J$ by $\phi(r)=(r+I, r+J)$.
(a) Show that ϕ is a ring homomorphism, with $\operatorname{ker}(\phi)=I \cap J$.

Solution: The fact that ϕ is a ring homomorphism follows immediately from the definitions of the operations in a direct sum and in a factor ring. Since the zero element of $R / I \oplus R / J$ is $(0+I, 0+J)$, we have $r \in \operatorname{ker}(\phi)$ if and only if $r \in I$ and $r \in J$, so $\operatorname{ker}(\phi)=I \cap J$.
(b) Show that if $I+J=R$, then ϕ is onto, and thus $R /(I \cap J) \cong R / I \oplus R / J$.

Solution: If $I+J=R$, then we can write $1=x+y$, for some $x \in I$ and $y \in J$. Given any element $(a+I, b+J) \in R / I \oplus R / J$, consider $r=b x+a y$. Then $r+I=b x+a y+I=a y+I=a(1-x)+I=a+I$, and similarly $r+J=b+J$. Thus $\phi(r)=(a+I, b+J)$, and ϕ is onto. The isomorphism follows from the fundamental homomorphism theorem.

Note: This can be called the Chinese remainder theorem for commutative rings. It is interesting to compare the above proof with the one given for Theorem 1.3.6.
20. Let I, J be ideals of the commutative ring R. Show that if $I+J=R$, then $I^{2}+J^{2}=R$.

Solution: If $I+J=R$, then there exist $a \in I$ and $b \in J$ with $a+b=1$. Cubing both sides gives us $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=1$. Then $a^{3}+3 a^{2} b \in I^{2}$ and $3 a b^{2}+b^{3} \in J^{2}$, so $I^{2}+J^{2}=R$.
32. Let R be the set of all rational numbers m / n such that n is odd.
(a) Show that R is a subring of \mathbf{Q}.

Solution: If $\frac{m_{1}}{n_{1}}, \frac{m_{2}}{n_{2}} \in R$, then n_{1} and n_{2} are odd. Since $n_{1} n_{2}$ is odd, we have $\frac{m_{1}}{n_{1}} \pm \frac{m_{2}}{n_{2}}=\frac{m_{1} n_{2} \pm m_{2} n_{1}}{n_{1} n_{2}} \in R$ and $\frac{m_{1}}{n_{1}} \cdot \frac{m_{2}}{n_{2}}=\frac{m_{1} m_{2}}{n_{1} n_{2}} \in R$. Thus R is a subring of \mathbf{Q}.
(b) Let $2^{k} R=\left\{m / n \in R \mid m\right.$ is a multiple of 2^{k} and n is odd $\}$, for any positive integer k. Show that $2^{k} R$ is an ideal of R.

Solution: If $\frac{m_{1}}{n_{1}}$ and $\frac{m_{2}}{n_{2}}$ belong to $2^{k} R$, then n_{1} and n_{2} are odd and $2^{k} \mid m_{1}$ and $2^{k} \mid m_{2}$. Then $n_{1} n_{2}$ is odd and $2^{k} \mid\left(m_{1} n_{2} \pm m_{2} n_{1}\right)$, and so $\frac{m_{1}}{n_{1}} \pm \frac{m_{2}}{n_{2}}=\frac{m_{1} n_{2} \pm m_{2} n_{1}}{n_{1} n_{2}}$ belongs to $2^{k} R$. If $\frac{r}{s} \in R$ and $\frac{m}{n} \in 2^{k} R$, then s and n are odd and $2^{k} \mid m$. Then $n s$ is odd and $2^{k} \mid m r$. Hence $\frac{r}{s} \cdot \frac{m}{n}=\frac{r m}{n s} \in 2^{k} R$. Therefore $2^{k} R$ is an ideal of R.
(c) Show that each proper nonzero ideal of R has the form $2^{k} R$, for some positive integer k.

Solution: Let I be a proper nonzero ideal of R, with $0 \neq \frac{m_{0}}{n_{0}} \in I$. Then it is easy to check that $I \cap \mathbf{Z}$ is an ideal of \mathbf{Z}, and $m_{0}=n_{0} \cdot \frac{m_{0}}{n_{0}}$ is a nonzero element of $I \cap \mathbf{Z}$. Therefore $I \cap \mathbf{Z}=u \mathbf{Z}$, for some nonzero $u \in \mathbf{Z}$. Then u cannot be odd, since this would imply that $1=\frac{1}{u} \cdot u \in I$, so we can write $u=2^{k} v$, where $2 \nmid v$ and k is positive. Then for any $\frac{m}{n} \in I$, we have $n \cdot \frac{m}{n}=q u$, for some $q \in \mathbf{Z}$. Therefore $\frac{m}{n}=2^{k} \cdot \frac{q v}{n}$, as required.
(d) Show that $R / 2^{k} R$ is isomorphic to $\mathbf{Z}_{2^{k}}$.

Solution: Given $\frac{m}{n} \in R$, since $\left(n, 2^{k}\right)=1$ there exist $u, v \in \mathbf{Z}$ with $2^{k} v+n u=1$. Hence $m=m n u+m v 2^{k}$, and so $\frac{m}{n}=\frac{m u+m v 2^{k}}{n}$, which implies that $\frac{m}{n}+2^{k} R=$ $m u+2^{k} R$. Write $m u=2^{k} q+r$, where $0 \leq r<2^{k}$. Then $m u+2^{k} R=r+2^{k} R$ where $0 \leq r<2^{k}$. If $r_{1}+2^{k} R=r_{2}+2^{k} R$ where $0 \leq r_{1}<2^{k}$ and $0 \leq r_{2}<2^{k}$, then $r_{1}-r_{2}=\frac{m 2^{k}}{n}$, where n is odd. Hence $2^{k} \mid n\left(r_{1}-r_{2}\right)$, and since $\left(2^{k}, n\right)=1$ we have $r_{1} \equiv r_{2}\left(\bmod 2^{k}\right)$. Since $0 \leq r_{1}<2^{k}$ and $0 \leq r_{2}<2^{k}$ we have $r_{1}=r_{2}$. Thus every element of $R / 2^{k} R$ can be written uniquely in the form $r+2^{k} R$ where
$0 \leq r<2^{k}$ and $r \in \mathbf{Z}$. Define $\phi: R / 2^{k} R \rightarrow \mathbf{Z}_{2^{k}}$ by $\phi\left(r+2^{k} R\right)=[r]_{2^{k}}$. Since

$$
\begin{aligned}
\phi\left(\left(r_{1}+2^{k} R\right)+\left(r_{2}+2^{k} R\right)\right) & =\phi\left(r+2^{k} R\right)=[r]_{2^{k}} \\
& =\left[r_{1}\right]_{2^{k}}+\left[r_{2}\right]_{2^{k}} \\
& =\phi\left(r_{1}+2^{k} R\right)+\phi\left(r_{2}+2^{k} R\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\phi\left(\left(r_{1}+2^{k} R\right)\left(r_{2}+2^{k} R\right)\right) & =\phi\left(r_{1} r_{2}+2^{k} R\right)=\phi\left(s+2^{k} R\right) \\
& =[s]_{2^{k}}=\left[r_{1}\right]_{2^{k}}\left[r_{2}\right]_{2^{k}} \\
& =\phi\left(r_{1}+2^{k} R\right) \phi\left(r_{2}+2^{k} R\right)
\end{aligned}
$$

where $r \equiv r_{1}+r_{2}\left(\bmod 2^{k}\right)$ with $0 \leq r<2^{k}$ and $s \equiv r_{1} r_{2}\left(\bmod 2^{k}\right)$ with $0 \leq s<2^{k}$, it follows that ϕ is a ring homomorphism.

Given $[r]_{2^{k}} \in \mathbf{Z}_{2^{k}}$ we have $\phi\left(r+2^{k} R\right)=[r]_{2^{k}}$ and so ϕ is onto.
(e) Show that $2 R$ is the unique maximal ideal of R.

Solution: It follows from part (d) that $2 R$ is a maximal ideal, since $R / 2 R$ is a field. It follows from part (c) that every other proper ideal is contained in $2 R$.

5.4. Quotient Fields

12. Show that if P is a prime ideal of D, then $D_{P}=\{a / b \in Q(D) \mid b \notin P\}$ is an integral domain with $D \subseteq D_{P} \subseteq Q(D)$.
Solution: Let a / b and c / d belong to D_{P}. Then $b, d \in D-P$, and so $b d \in D-P$ since P is a prime ideal. It follows that $a / b+c / d=(a d+b c) /(b d) \in D_{P}$ and $(a / b)(c / d)=(a c) /(b d) \in D_{P}$, and so D_{P} is closed under addition and multiplication. Since $1 \notin P$, the given set includes D. Finally, since $Q(D)$ is a field, the subring D_{P} is an integral domain.
13. In the ring D_{P} defined in Exercise 12 , let $M=\left\{a / b \in D_{P} \mid a \in P\right\}$.
(a) Show that M is an ideal of D_{P}.

Solution: The subset M is nonempty, since $0=0 / 1 \in M$. Let a / b and c / d belong to M. Then $(a / b) \pm(c / d)=(a d \pm b c) /(b d) \in M$ since $a, c \in P$ implies that $a d \pm b c \in P$. If $r / s \in D_{P}$, then $(r / s) \cdot(a / b)=r a / s b \in M$ since $r a \in P$. Therefore M is an ideal of D_{P}.
(b) Show that $D_{P} / M \cong Q(D / P)$, and conclude that M is a maximal ideal of D_{P}.
Solution: Note that we have the following chain of subrings: $D \subseteq D_{P} \subseteq Q(D)$. It is clear that $P \subseteq D \cap M$. If $a / b \in D \cap M$, then $a / b \sim r / 1$ for some $r \in D$, so
$r b=a \in P$. Since P is a prime ideal and $b \notin P$, we must have $r \in P$, showing that $P=D \cap M$.

Since $P=D \cap M$, the inclusion $\theta: D \rightarrow D_{P}$ maps P into M, and therefore $\bar{\theta}: D / P \rightarrow D_{P} / M$ defined by $\bar{\theta}(x+P)=(x / 1)+M$ is well-defined. It is easy to check that $\bar{\theta}$ is a ring homomorphism, since its definition just depends on an inclusion mapping. If $b \notin P$, then $b / 1 \notin M$, and so $\bar{\theta}$ has zero kernel, and is therefore one-to-one.

For $b \notin P$, the element $b+P$ is invertible in $Q(D / P)$, and $\bar{\theta}(b+P)=$ $(b / 1)+M$ is invertible in D_{P} / M since $((b / 1)+M)((1 / b)+M)=1+M$. As in Theorem 5.4.6 it can be shown that there exists a one-to-one ring homomorphism $\widehat{\theta}: Q(D / P) \rightarrow D_{P} / M$ defined by $\widehat{\theta}\left(\frac{x+P}{y+P}\right)=\bar{\theta}(x+P)(\bar{\theta}(y+P))^{-1}$, for $x+P, y+P$ in $Q(D / P)$, where $y+P$ is nonzero. For each $(a / b)+M$ in D_{P} / M, we have

$$
(a / b)+M=((a / 1)+M)((b / 1)+M)^{-1}=\widehat{\theta}(a+P) \widehat{\theta}(b+P)^{-1}=\widehat{\theta}\left(\frac{a+P}{b+P}\right)
$$

and so $\widehat{\theta}$ is onto. Thus D_{P} / M is isomorphic to a field, and so M is a maximal ideal. The following diagram shows the mappings $\bar{\theta}$ and $\widehat{\theta}$.

6 FIELDS

6.1. Algebraic Elements

7. Let $u, v \in \mathbf{Q}^{+}$, where $u \neq v$ and $u, v, u v$ are not squares. Find the minimal polynomial for $\sqrt{u}+\sqrt{v}$ over \mathbf{Q}.
Solution: Let $\alpha=\sqrt{u}+\sqrt{v}$. Then $(\alpha-\sqrt{u})^{2}=v$ and so $\alpha^{2}-2 \sqrt{u} \alpha+u=$ v. Thus $\alpha^{2}+u-v=2 \sqrt{u} \alpha$ and therefore $\left(\alpha^{2}+u-v\right)^{2}=4 u \alpha^{2}$. Hence $\alpha^{4}+2(u-v) \alpha^{2}+(u-v)^{2}=4 u \alpha^{2}$ and so $\alpha^{4}-2(u+v) \alpha^{2}+(u-v)^{2}=0$. Thus α is a root of $f(x)=x^{4}-2(u+v) x^{2}+(u-v)^{2}$.

We will find all the roots of $f(x)$. By the quadratic formula, we have

$$
\begin{aligned}
x^{2} & =\frac{2(u+v) \pm \sqrt{4(u+v)^{2}-4(u-v)^{2}}}{2} \\
& =u+v \pm \sqrt{4 u v} \\
& =u \pm 2 \sqrt{u} \sqrt{v}+v \\
& =(\sqrt{u} \pm \sqrt{v})^{2}
\end{aligned}
$$

Thus $x= \pm(\sqrt{u} \pm \sqrt{v})$, so the set S of four roots of $f(x)$ is $S=\{ \pm \sqrt{u} \pm \sqrt{v}\}$.
We will show that $f(x)$ is irreducible in $\mathbf{Q}[x]$. Since none of the four roots of $f(x)$ is an element of $\mathbf{Q}, f(x)$ has no factor of degree 1 in $\mathbf{Q}[x]$. If $f(x)$ had a factor $h(x)$ of degree 2 in $\mathbf{Q}[x]$, then $h(x)$ would have two roots in the set S. Let $r_{1}=\sqrt{u}+\sqrt{v}, r_{2}=\sqrt{u}-\sqrt{v}, r_{3}=-\sqrt{u}+\sqrt{v}, r_{4}=-\sqrt{u}-\sqrt{v}$. If r_{i}, r_{j} are two roots of $h(x)$, then $r_{i}+r_{j} \in \mathbf{Q}$ and $r_{i} r_{j} \in \mathbf{Q}$ by Exercise 10 of Section 4.4. Since $r_{1}+r_{2} \notin \mathbf{Q}, r_{1}+r_{3} \notin \mathbf{Q}, r_{1} r_{4} \notin \mathbf{Q}, r_{2} r_{3} \notin \mathbf{Q}, r_{2}+r_{4} \notin \mathbf{Q}, r_{3}+r_{4} \notin \mathbf{Q}$, no such factor $h(x)$ of degree 2 exists.

Since $f(x)$ is irreducible, it is the minimal polynomial of $\sqrt{v}+\sqrt{v}$ over \mathbf{Q}.

6.2. Finite and Algebraic Elements

5. Let $F \supset K$ be an extension field, with $u \in F$. Show that if $[K(u): K]$ is an odd number, then $K\left(u^{2}\right)=K(u)$.
Solution: Since $u^{2} \in K(u)$, we have $K(u) \supseteq K\left(u^{2}\right) \supset K$. Suppose that $u \notin$ $K\left(u^{2}\right)$. Then $x^{2}-u^{2}$ is irreducible over $K\left(u^{2}\right)$ since it has no roots in $K\left(u^{2}\right)$, so u is a root of the irreducible polynomial $x^{2}-u^{2}$ over $K\left(u^{2}\right)$. Thus $\left[K(u): K\left(u^{2}\right)\right]=$ 2 , and therefore 2 is a factor of $[K(u): K]$. This contracts the assumption that [$K(u): K]$ is odd.
6. Let F be a field generated over the field K by u and v of relatively prime degrees m and n, respectively, over K. Prove that $[F: K]=m n$.

Solution: Since $F=K(u, v) \supseteq K(u) \supseteq K$, where $[K(u): K]=m$ and $[K(u, v): K(u)] \leq n$, we have $[F: K] \leq m n$. But $[K(v): K]=n$ is a divisor of $[F: K]$, and since $\operatorname{gcd}(m, n)=1$, we must have $[F: K]=m n$.
Note: A proof can also be given using Exercise 6.
8. Find the degree of $\sqrt[3]{2}+i$ over \mathbf{Q}

Solution: Let $u=\sqrt[3]{2}+i$, so that $u-i=\sqrt[3]{2}$. Then $(u-i)^{3}=2$, so we have $u^{3}-3 i u^{2}+3 i^{2} u-i^{3}=2$, or $u^{3}-3 i u^{2}-3 u+i=2$. Solving for i we get $i=\left(u^{3}-3 u-2\right) /\left(3 u^{2}-1\right)$, and this shows that $i \in \mathbf{Q}(\sqrt[3]{2}+i)$. Thus $\sqrt[3]{2} \in \mathbf{Q}(\sqrt[3]{2}+i)$, and so $\mathbf{Q}(\sqrt[3]{2}+i)=\mathbf{Q}(\sqrt[3]{2}, i)$.

Since $x^{3}-2$ is irreducible over \mathbf{Q}, the number $\sqrt[3]{2}$ has degree 3 over \mathbf{Q}. Since $x^{2}+1$ is irreducible over \mathbf{Q}, we see that i has degree 2 over \mathbf{Q}. It follows from Exercise 7 that therefore $[\mathbf{Q}(\sqrt[3]{2}+i): \mathbf{Q}]=6$.

6.4. Splitting Fields

1. Determine the splitting fields in \mathbf{C} for the following polynomials (over \mathbf{Q}).
(c) $x^{4}+4$

Solution: We have $x^{4}+4=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)$, where the factors are irreducible by Eisenstein's criterion, with $p=2$. Applying the quadratic formula, we see that the roots are $\pm 1 \pm i$, so the splitting field is $\mathbf{Q}(i)$, which has degree 2 over \mathbf{Q}.
Alternate solution: We could also solve the equation $x^{4}=-4$. To find one root, use DeMoivre's theorem to get $\sqrt[4]{-1}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$, and then multiply by $\sqrt[4]{4}=\sqrt{2}$, to get $1+i$. The other roots are found by multiplying by the powers of i, because it is a primitive 4th root of unity.
2. Determine the splitting fields in \mathbf{C} for the following polynomials (over \mathbf{Q}).
(c) $x^{4}+1$

Solution: Let F be the splitting field for $x^{4}+1$ over Q. Since $(x+1)^{4}+1$ satisfies Eisenstein's criterion, $x^{4}+1$ is irreducible over \mathbf{Q}, and so adjoining a root of $x^{4}+1$ to \mathbf{Q} will produce an extension of degree 4 by Proposition 6.2.2. Thus $[F: \mathbf{Q}] \geq 4$.

To find a 4th root of -1 , we can use the procedure outlined in Example A.5.3 of Appendix A.5, which yields the root $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$. To find all roots, we can multiply this one by the 4 th roots of unity: $\pm 1, \pm i$. It is then clear that $F \subseteq \mathbf{Q}(\sqrt{2}, i)$, and since $[\mathbf{Q}(\sqrt{2}, i): \mathbf{Q}]=4$, we must have $F=\mathbf{Q}(\sqrt{2}, i)$.

Alternate solution: We have

$$
x^{4}+1=\left(x^{2}+i\right)\left(x^{2}-i\right)=(x+i \sqrt{i})(x-i \sqrt{i})(x+\sqrt{i})(x-\sqrt{i}) .
$$

Since $\sqrt{i}=(\sqrt{2}+\sqrt{2} i) / 2$ it follows that the splitting field of $x^{4}+1$ over \mathbf{Q} is $\mathbf{Q}(\sqrt{i})=\mathbf{Q}(i \sqrt{i}, \sqrt{i})=\mathbf{Q}(\sqrt{2}, i)$.
(d) $x^{6}-1$

Discussion: Be careful here-this polynomial is not irreducible. In fact, $x^{6}-1$ factors in two ways, and provides an important clue. Note that $x^{6}-1=\left(x^{3}\right)^{2}-1=$ $\left(x^{3}-1\right)\left(x^{3}+1\right)=(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)$ and $x^{6}-1=\left(x^{2}\right)^{3}-1=$ $\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$.

Solution: We have

$$
x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)=(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right) .
$$

The roots of $x^{2}+x+1$ are the primitive third roots of unity. (See Definition 4.4.8 and Example A.5.1). The roots of $x^{2}-x+1$ are therefore the primitive sixth roots of unity. Adjoining a root $\omega=\frac{1}{2}+\frac{\sqrt{3}}{2} i$ of $x^{2}-x+1$ gives all four of these roots, and so $\mathbf{Q}(\omega)$ is the splitting field of $x^{6}-1$ over \mathbf{Q}, with $[\mathbf{Q}(\omega): \mathbf{Q}]=2$.
11. Let K be a field, and let F be an extension field of K. Let $\phi: F \rightarrow F$ be an automorphism of F such that $\phi(a)=a$, for all $a \in K$. Show that for any polynomial $f(x) \in K[x]$, and any root $u \in F$ of $f(x)$, the image $\phi(u)$ must be a root of $f(x)$.

Solution: Let $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, where $a_{i} \in K$, for $i=0,1, \ldots, n$. If $u \in F$ with $f(u)=0$, then we have $\phi(f(u))=\phi\left(a_{0}+a_{1} u+\ldots+a_{n} u^{n}\right)=$ $\phi\left(a_{0}\right)+\phi\left(a_{1} u\right)+\ldots+\phi\left(a_{n} u^{n}\right)=\phi\left(a_{0}\right)+\phi\left(a_{1}\right) \phi(u)+\ldots+\phi\left(a_{n}\right)(\phi(u))^{n}$ since ϕ preserves sums and products. Finally, since $\phi\left(a_{i}\right)=a_{i}$ for $i=0,1, \ldots, n$, we have $\phi(f(u))=a_{0}+a_{1} \phi(u)+\ldots+a_{n}(\phi(u))^{n}$. Since $f(u)=0$, we must have $\phi(f(u))=0$, and thus $a_{0}+a_{1} \phi(u)+\ldots+a_{n}(\phi(u))^{n}=0$, showing that $f(\phi(u))=0$. This completes the proof that $\phi(u)$ is a root of $f(x)$.

6.5. Finite Fields

4. (a) Factor $x^{6}-1$ over GF(7)

Solution: This is a direct application of Theorem 6.5.2. We have

$$
x^{6}-1=(x-1)(x+1)(x-2)(x+2)(x-3)(x+3) .
$$

(b) Factor $x^{5}-1$ over GF(11)

Solution: Looking for roots of $x^{5}-1$ in GF(11) is the same as looking for elements whose order is a divisor of 5 in the multiplicative group GF $(11)^{\times}$. Theorem 6.5.10 implies that $\mathrm{GF}(11)^{\times}$is cyclic of order 10 . Thus it contains 4 elements of order 5 , which means the $x^{5}-1$ must split over GF(11). To look for a generator, we begin with 2 . The relevant powers of 2 are $2^{2}=4$ and $2^{5} \equiv-1$, so 2 must be a generator
since it has order 10. The even powers of 2 have order 5 , and these are $2^{2}=4$, $2^{4} \equiv 5,2^{6} \equiv 9$, and $2^{8} \equiv 3$. Therefore $x^{5}-1=(x-1)(x-3)(x-4)(x-5)(x-9)$ over GF(11).
6. Find the splitting field of $x^{4}-1$ over GF(7).

Solution: We have $x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right)$. A quick check of ± 2 and ± 3 shows that they are not roots of $x^{2}+1$, so $x^{2}+1$ is irreducible over $\mathrm{GF}(7)$. To obtain the splitting field we must adjoin a root of $x^{2}+1$, so we get a splitting field $\mathrm{GF}\left(7^{2}\right) \cong \mathbf{Z}_{7}[x] /\left\langle x^{2}+1\right\rangle$ of degree 2 over GF(7).
15. Let F be a field whose multiplicative group F^{\times}is cyclic. Prove that F must be a finite field.

Solution: Suppose that $F^{\times}=\langle u\rangle$. If $\operatorname{char}(F) \neq 2$, then $-1 \neq 1$, so $-1 \in F^{\times}$and therefore $-1=u^{n}$ for some nonzero integer n. Then $u^{2 n}=1$, so $\langle u\rangle$ is finite, and therefore F is finite.

If $\operatorname{char}(F)=2$, and $u \neq 1$, then $1+u \neq 0$, so $1+u=u^{n}$ or $1+u=u^{-n}$, for some positive integer n. Then $u^{n}-u-1=0$ in the first case, and $u^{n+1}+u^{n}-1=0$ in the second, so u is algebraic over the base field $\operatorname{GF}(2)$. Thus $F=\operatorname{GF}(2)(u)$ is finite.

7 STRUCTURE OF GROUPS

7.1. Isomorphism Theorems; Automorphisms

6. Prove that a finite group whose only automorphism is the identity map must have order at most two.
Solution: Let G be a nontrivial finite group with $\operatorname{Aut}(G)=\left\{1_{G}\right\}$. Since all inner automorphisms are trivial, G is abelian. Then $\alpha: G \rightarrow G$ defined by $\alpha(g)=g^{-1}$, for all $g \in G$, is an automorphism since it is a one-to-one correspondence and $\alpha(a b)=(a b)^{-1}=(b a)^{-1}=a^{-1} b^{-1}=\alpha(a) \alpha(b)$, for all $a, b \in G$. Since α is trivial, we have $g=g^{-1}$ for all $g \in G$, and thus every nontrivial element of G has order 2. If G is written additively, we can therefore define a vector space structure over the field \mathbf{Z}_{2} by defining $0 \cdot x=0$ and $1 \cdot x=x$, for all $x \in G$. Since G is finite, it has a basis by Theorem A.7.10. If $\operatorname{dim}(G) \geq 2$, then the function that interchanges two basis elements is a nontrivial automorphism of G. We conclude that $\operatorname{dim}(G)=1$, and so $|G|=2$.
7. Let G be a group and let N be a normal subgroup of G of finite index. Suppose that H is a finite subgroup of G and that the order of H is relatively prime to the index of N in G. Prove that H is contained in N.
Solution: Let $\pi: G \rightarrow G / N$ be the natural projection. Then $\pi(H)$ is a subgroup of G / N, so its order must be a divisor of $|G / N|$. On the other hand, $|\pi(H)|$ must be a divisor of $|H|$. Since $\operatorname{gcd}(|H|,[G: N])=1$, we must have $|\pi(H)|=1$, which implies that $H \subseteq \operatorname{ker}(\pi)=N$.

7.2. Conjugacy

9. Let G be a finite group with $[G: Z(G)]=n$. Show that the number of elements in each conjugacy class of G is a divisor of n.
Solution: By Proposition 7.2.5, the conjugacy class of $a \in G$ has $[G: C(a)]$ elements. Since $Z(G) \subseteq C(a) \subseteq G$, it follows from Lagrange's theorem that $|G|=[G: Z(G)] \cdot|Z(G)|$ and then

$$
|G|=[G: C(a)] \cdot|C(a)|=[G: C(a)] \cdot[C(a): Z(G)] \cdot|Z(G)| .
$$

Therefore $n=[G: Z(G)]=[G: C(a)] \cdot[C(a): Z(G)]$, completing the proof.
18. Let $\sigma \in A_{n}$, and let $C_{S_{n}}(\sigma)$ and $C_{A_{n}}(\sigma)$ denote the centralizers of σ in S_{n} and A_{n}, respectively.
(a) Show that either $C_{A_{n}}(\sigma)=C_{S_{n}}(\sigma)$ or $\left[C_{S_{n}}(\sigma): C_{A_{n}}(\sigma)\right]=2$.

Solution: By Exercise 5 of Section 3.8 we know that if H is any subgroup of S_{n}, then either $H \cap A_{n}=H$ or $H \cap A_{n}$ has index 2 in H. Since $C_{A_{n}}(\sigma)=$ $C_{S_{n}}(\sigma) \cap A_{n}$, either $C_{A_{n}}(\sigma)=C_{S_{n}}(\sigma)$ or else $C_{A_{n}}(\sigma)$ has index 2 in $C_{S_{n}}(\sigma)$.
(b) Show that the conjugacy class of σ in A_{n} is either the same as its conjugacy class in S_{n} or else has half as many elements.

Solution: Since $C_{A_{n}}(\sigma) \subseteq C_{S_{n}}(\sigma) \subseteq S_{n}$ and $C_{A_{n}}(\sigma) \subseteq A_{n} \subset S_{n}$, we have

$$
\left[S_{n}: C_{S_{n}}(\sigma)\right]\left[C_{S_{n}}(\sigma): C_{A_{n}}(\sigma)\right]=\left[S_{n}: C_{A_{n}}(\sigma)\right]=\left[S_{n}: A_{n}\right]\left[A_{n}: C_{A_{n}}(\sigma)\right]
$$

If $\left[C_{S_{n}}(\sigma): C_{A_{n}}(\sigma)\right]=2$ (the second case in part (a)), then dividing the above equation by 2 gives us $\left[A_{n}: C_{A_{n}}(\sigma)\right]=\left[S_{n}: C_{S_{n}}(\sigma)\right]$, and so σ has the same number of conjugates in A_{n} as in S_{n}.

If $C_{S_{n}}(\sigma)=C_{A_{n}}(\sigma)$ (the first case in part (a)), then $\left[S_{n}: C_{S_{n}}(\sigma)\right]=$ $\left[S_{n}: C_{A_{n}}(\sigma)\right]=2\left[A_{n}: C_{A_{n}}(\sigma)\right]$, and so σ has the half the number of conjugates in A_{n} as in S_{n}.
(c) Find the center of the alternating group A_{n}.

Solution: In the case $n=3$, we have $Z\left(A_{3}\right)=A_{3}$ since A_{3} is abelian. If $n \geq 4$, then we claim that $Z\left(A_{n}\right)=\{(1)\}$. This proof illustrates the use of conjugacy classes, but we note that Theorem 7.7.4, which shows that A_{n} is simple for $n \geq 5$, gives a much shorter proof for $n \geq 5$.

Since the conjugacy class of an element $\sigma \neq(1)$ in S_{n} consists of all permutations with a given cycle structure, it has more than 2 elements if $n \geq 4$, and therefore its conjugacy class in A_{n} has more than 1 element. Thus the identity (1) is the only element whose conjugacy class consists of exactly one element, which shows that the center is $\{(1)\}$.
22. Let N be a normal subgroup of a group G. Suppose that $|N|=5$ and $|G|$ is odd. Prove that N is contained in the center of G.

Solution: Since $|N|=5$, the subgroup N is cyclic, say $N=\langle a\rangle$. It suffices to show that $a \in Z(G)$, which is equivalent to showing that a has no conjugates other than itself. We first note that since N is normal in G, any conjugate of a must be in N. We next note that if x is conjugate to y, which we will write $x \sim y$, then $x^{n} \sim y^{n}$. Finally, we note that the number of conjugates of a must be a divisor of G.

Case 1. If $a \sim a^{2}$, then $a^{2} \sim a^{4}$, and $a^{4} \sim a^{8}=a^{3}$.
Case 2. If $a \sim a^{3}$, then $a^{3} \sim a^{9}=a^{4}$, and $a^{4} \sim a^{12}=a^{2}$.
Case 3. If $a \sim a^{4}$, then $a^{2} \sim a^{8}=a^{3}$.
In the first two cases a has 4 conjugates, which contradicts the assumption that G has odd order. In the last case, a has either 2 or 4 conjugates, which again leads to the same contradiction.

7.3. Groups Acting on Sets

2. Let H be a subgroup of G, and let S denote the set of left cosets of H. Define a group action of G on S by setting $a \cdot(x H)=a x H$, for all $a, x \in G$.
(a) Let $\phi: G \rightarrow \operatorname{Sym}(S)$ be the homomorphism that corresponds to the group action defined above. Show that $\operatorname{ker}(\phi)$ is the largest normal subgroup of G that is contained in H.
Solution: For $a \in G$ we have $\phi(a)=\lambda_{a}$, where $\lambda_{a}: S \rightarrow S$ is given by $\lambda_{a}(x H)=a(x H)$. It is routine to check that λ_{a} is well-defined, one-to-one, and onto. Now

$$
\begin{aligned}
\operatorname{ker}(\phi) & =\left\{a \in G \mid \lambda_{a}(x H)=x H \text { for all } x \in G\right\} \\
& =\{a \in G \mid \text { axH }=x H \text { for all } x \in G\} \\
& =\left\{a \in G \mid x^{-1} a x \in H \text { for all } x \in G\right\}
\end{aligned}
$$

Clearly, $\operatorname{ker}(\phi) \subseteq H$ and $\operatorname{ker}(\phi)$ is a normal subgroup of G. Let N be a normal subgroup of G with $N \subseteq H$. Then for all $x \in G$, we have $x^{-1} N x \subseteq N \subseteq H$, and so $N \subseteq \operatorname{ker}(\phi)$.
(b) Assume that G is finite and let $[G: H]=n$. Show that if n ! is not divisible by $|G|$, then H must contain a nontrivial normal subgroup of G.
Solution: Since $[G: H]=n$, we have $|S|=n$ and $|\operatorname{Sym}(S)|=n!$. If $|G| \nmid n$!, then the homomorphism ϕ of part (a) is not one-to-one, and so $\operatorname{ker}(\phi) \neq\{e\}$. Hence $\operatorname{ker}(\phi)$ is a nontrivial normal subgroup of G, and $\operatorname{ker}(\phi) \subseteq H$.
3. Let G be a group which has a subgroup of index 6 . Prove that G has a normal subgroup whose index is a divisor of 720 .
Solution: Suppose that H is a subgroup with index 6 . Letting G act by multiplication on the left cosets of H (as in Exercise 2) produces a homomorphism from G into S_{6}. The order of the image must be a divisor of $\left|S_{6}\right|=720$, and so the index of the kernel is a divisor of 720 .
4. Let G act on the subgroup H by conjugation, let S be the set of all conjugates of H, and let $\phi: G \rightarrow \operatorname{Sym}(S)$ be the corresponding homomorphism. Show that $\operatorname{ker}(\phi)$ is the intersection of the normalizers $N\left(a H a^{-1}\right)$ of all conjugates of H.
Solution: We have $x \in \operatorname{ker}(\phi)$ iff $x\left(a H a^{-1}\right) x^{-1}=a H a^{-1}$ for all $a \in G$.
10. Let $F=\mathrm{GF}(3), G=\mathrm{GL}_{2}(F)$, and let N be the center of G. Prove that $G / N \cong S_{4}$ by defining an action of G on the four one-dimensional subspaces of F^{2}.

Solution: In F^{2} there are 4 one-dimensional subspaces, with respective basis elements $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Each matrix in G represents an isomorphism of F^{2}, and so it simply permutes these one-dimensional subspaces. Thus we can let S be the set of one-dimensional subspaces, and let G act on them as described above. Multiplying by a scalar leaves each one-dimensional subspace fixed, and the two scalar transformations $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, are the only linear transformations to do so. Thus the action of G defines a homomorphism into S_{4} whose kernel is the set of scalar matrices, which is precisely the center N by Exercise 7 of Section 3.3. Since $|G|=48$ by Exercise 5 of Section 3.3 and N consists of two scalar matrices, we have $|G / N|=24$. It follows that the homomorphism must map G / N onto S_{4}, since $\left|S_{4}\right|=4!=24$, and thus $G / N \cong S_{4}$.
16. If G is a finite group of order n and p is the least prime such that $p \mid n$, show that any subgroup of index p is normal in G.

Solution: Let H be a subgroup of index p, and let $S=\{x H \mid x \in G\}$. Let $\phi: G \rightarrow \operatorname{Sym}(S)$ be the homomorphism of Exercise 2 (a). If $n \mid p!$, then $p \mid n$ implies that $n=p$, in which case $H=\{e\}$. Thus we may assume that $n \nmid p$!, in which case $\operatorname{ker}(\phi)$ is a nontrivial normal subgroup of G that is contained in H, by Exercise $2(\mathrm{~b})$. If we let $k=[G: \operatorname{ker}(\phi)]$, then $k \mid p!$ and $k \mid n$. Since p is the smallest prime that divides n, we have $k=p$, and so $H=\operatorname{ker}(\phi)$ is a normal subgroup.

7.4. The Sylow Theorems

3. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of G, then the number of Sylow p-subgroups of N is the same as that of G.
Solution: Suppose that N contains the Sylow p-subgroup P. Then since N is normal it also contains all of the conjugates of P. But this means that N contains all of the Sylow p-subgroups of G, since they are all conjugate by Theorem 7.4.4 (a). We conclude that N and G have the same number of Sylow p-subgroups.
4. Prove that if G is a group of order 105 , then G has a normal Sylow 5 -subgroup and a normal Sylow 7 -subgroup.

Solution: Since $105=3 \cdot 5 \cdot 7$, the number of Sylow 3 -subgroups must be 1 or 7 , the number of Sylow 5 -subgroups must be 1 or 21, and the number of Sylow 7 -subgroups must be 1 or 15 . Let P be a Sylow 5 -subgroup and let Q be a Sylow 7 -subgroup. At least one of these subgroups must be normal, since otherwise we would have $21 \cdot 4$ elements of order 5 and $15 \cdot 6$ elements of order 7 . Therefore $P Q$ is a subgroup, and it must be normal since its index is the smallest prime divisor of
$|G|$. (See Exercise 16 of Section 7.3.) It follows that we can apply Exercise 3. Since $P Q$ is normal and contains a Sylow 5 -subgroup, we can reduce to the number 35 when considering the number of Sylow 5 -subgroups, and thus the number of Sylow 5 -subgroups of G is the same as the number of Sylow 5 -subgroups of $P Q$, which is 1. Similarly, since $P Q$ is normal and contains a Sylow 7 -subgroup, the number of Sylow 7-subgroups of G is the same as the number of Sylow 7 -subgroups of $P Q$, which is 1 .
9. Let p be a prime number. Find all Sylow p-subgroups of the symmetric group S_{p}.
Solution: Since $\left|S_{p}\right|=p!$, and p is a prime number, the highest power of p that divides $\left|S_{p}\right|$ is p. Therefore the Sylow p-subgroups are precisely the cyclic subgroups of order p, each generated by a p-cycle. There are $(p-1)!=p!/ p$ ways to construct a p-cycle $\left(a_{1}, \ldots, a_{p}\right)$. The subgroup generated by a given p cycle will contain the identity and the $p-1$ powers of the cycle. Two different such subgroups intersect in the identity, since they are of prime order, so the total number of subgroups of order p in S_{p} is $(p-2)!=(p-1)!/(p-1)$.
16. Find the normalizer of $\langle(1,2,3,4,5)\rangle$ in A_{5} and in S_{5}.

Solution: Let $\langle(1,2,3,4,5)\rangle=H$. Note that H is a Sylow 5 -subgroup of S_{5}, that S_{5} had 6 Sylow 5-subgroups by Exercise 9, and that A_{5} also has 6 Sylow 5 -subgroups by Exercise 3 .

First consider $H=\langle(1,2,3,4,5)\rangle$ as a subgroup of A_{5}. Since there are 6 subgroups conjugate to H, it follows from Theorem 7.3.4 (b) that $\left[A_{5}: N(H)\right]=$ 6 , and so $|N(H)|=10$. Letting $\sigma=(1,2,3,4,5)$, a solution τ of the equation $\tau \sigma \tau^{-1}=\sigma^{-1}$ certainly belongs to $N(H)$, since $\tau \sigma^{i} \tau^{-1}=\sigma^{-i}$ for $i=1,2,3,4$. As in Exercise 15 (b) of Section 2.3, we can solve to obtain $\tau=(2,5)(3,4)$, and note that $\tau \in A_{5}$. Since $|N(H)|=10$, we must have $N(H)=\langle\sigma, \tau\rangle$.

Now consider H as a subgroup of S_{5}. Arguing as above on the number of Sylow 5-subgroups, we have $\left[S_{5}: N(H)\right]=6$, and so in this case $|N(H)|=20$. To look for an element in $N(H)$, consider $v=(2,3,5,4)$, since $(2,3,5,4)^{2}=$ $(2,5)(3,4)$. We have $(2,3,5,4)(1,2,3,4,5)(2,3,5,4)^{-1}=(1,3,5,2,4)=\sigma^{2}$, and so, as before, $v \in N(H)$. Since $o(v)=4$, we see that $\langle\sigma, \nu\rangle=N(H)$.
Note: Given the relation $\tau \sigma=\sigma^{-1} \tau$, it follows that the normalizer of H in A_{5} is isomorphic to D_{5}. Similarly, given the relation $v \sigma=\sigma^{2} v$, it follows from Exercise 17 (a) of Section 7.1 that the normalizer of H in S_{5} is isomorphic to F_{20}. (This is also shown directly in Exercise 21 of Section 7.2.)
20. Let G be a group of order 340. Prove that G has a normal cyclic subgroup of order 85 and an abelian subgroup of order 4.
Solution: First, $340=2^{2} \cdot 5 \cdot 17$. There exists a Sylow 2-subgroup of order 4, and it must be abelian. No nontrivial divisor of $68=2^{2} \cdot 17$ is congruent to $1 \bmod 5$,
so the Sylow 5 -subgroup is normal. Similarly, the Sylow 17 -subgroup is normal. These subgroups have trivial intersection, so their product is a direct product, and hence must be cyclic of order $85=5 \cdot 17$. The product of two normal subgroups is again normal, so this produces the required normal cyclic subgroup of order 85 .
21. Show that a group of order 108 has a normal subgroup of order 9 or 27 .

Solution: Let S be a Sylow 3-subgroup of G. Then $[G: S]=4$, since $|G|=$ $2^{2} 3^{3}$, so we can let G act by multiplication on the cosets of S. This defines a homomorphism $\phi: G \rightarrow S_{4}$, so it follows that $|\phi(G)|$ is a divisor of 12 , since it must be a common divisor of 108 and 24. Thus $|\operatorname{ker}(\phi)| \geq 9$, and it follows from Exercise 2 (a) of Section 7.3 that $\operatorname{ker}(\phi) \subseteq S$. Thus $|\operatorname{ker}(\phi)|$ must be a divisor of 27 , and so either $|\operatorname{ker}(\phi)|=9$ or $|\operatorname{ker}(\phi)|=27$.

7.5. Finite Abelian Groups

4. Let G be an abelian group, written additively, which has 8 elements of order 3, 18 elements of order 9 , and no other elements besides the identity. Find (with proof) the decomposition of G as a direct sum of cyclic groups.

Solution: We have $|G|=27$. First, G is not cyclic since there is no element of order 27. Since there are elements of order $9, G$ must have \mathbf{Z}_{9} as a factor. To give a total of 27 elements, the only possibility is $G \cong \mathbf{Z}_{9} \oplus \mathbf{Z}_{3}$.
Check: The elements 3 and 6 have order 3 in \mathbf{Z}_{9}, while 1 and 2 have order 3 in \mathbf{Z}_{3}. Thus the following 8 elements have order 3 in the direct product: $(3,0),(6,0)$, $(3,1),(6,1),(3,2),(6,2),(0,1)$, and $(0,2)$.
10. Let G and H be finite abelian groups, and assume that they have the following property. For each positive integer m, G and H have the same number of elements of order m. Prove that G and H are isomorphic.

Solution: We first reduce the case to that of p-groups. Let p be a prime divisor of $|G|$, and let G_{p} and H_{p} be the Sylow p-subgroups of G and H, respectively. If we can show that $G_{p} \cong H_{p}$ for all p, then it will follow that $G \cong H$, since G and H are direct products of their Sylow subgroups.

Let $|G|=p^{k}$ for $k \in \mathbf{Z}^{+}$and suppose that $G \cong \mathbf{Z}_{p^{\alpha_{1}}} \oplus \mathbf{Z}_{p^{\alpha_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p^{\alpha_{t}}}$, where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{t}$ and $\sum_{i=1}^{t} \alpha_{i}=k$. Consider the number of elements of order p in G. There are $p-1$ such elements in $\mathbf{Z}_{p^{\alpha}}$; in G the elements of order p have the form $\left(a_{1}, \ldots, a_{t}\right)$, where $a_{i}=0$ or has order p, and at least one a_{i} is nonzero. Thus there are $p^{t}-1$ elements of order p in G.

Suppose that $H \cong \mathbf{Z}_{p^{\beta_{1}}} \oplus \mathbf{Z}_{p^{\beta_{2}}} \oplus \cdots \oplus \mathbf{Z}_{p^{\beta_{s}}}$, where $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{s}$ and $\sum_{i=1}^{t} \beta_{i}=k$. There are $p^{s}-1$ elements of order p in H, and therefore $s=t$.

Now consider $p G$, in which each element of order p^{j} in G becomes an element of order p^{j-1}. Then $p G$ and $p H$ have the same number of elements of each
order, so by induction on the order of the groups we must have $p G \cong p H$. Since $p \mathbf{Z}_{p^{\alpha}} \cong \mathbf{Z}_{p^{\alpha-1}}$, we have $p G \cong \mathbf{Z}_{p^{\alpha_{1}-1}} \oplus \mathbf{Z}_{p^{\alpha_{2}-1}} \oplus \cdots \oplus \mathbf{Z}_{p^{\alpha_{t}-1}}$, and $p H \cong$ $\mathbf{Z}_{p^{\beta_{1}-1}} \oplus \mathbf{Z}_{p^{\beta_{2}-1}} \oplus \cdots \oplus \mathbf{Z}_{p^{\beta_{t}-1}}$. Therefore $p G \cong p H$ implies $\alpha_{1}-1=\beta_{1}-1$, $\alpha_{2}-1=\beta_{2}-1, \ldots, \alpha_{t}-1=\beta_{t}-1$, so $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{t}=\beta_{t}$, and therefore $G \cong H$.
13. Let G and H be finite abelian groups, written additively, and assume that $G \oplus G$ is isomorphic to $H \oplus H$. Prove that G is isomorphic to H.

Solution: Let p be a prime divisor of $|G|$, and let $q=p^{\alpha}$ be the order of a cyclic component of G. If G has k such components, then $G \oplus G$ has $2 k$ components of order q. An isomorphism between $G \oplus G$ and $H \oplus H$ must preserve these components, so it follows that H also has k cyclic components of order q. Since this is true for every such q, Theorem 7.5.6 gives identical decompositions for G and H. It follows that $G \cong H$.

7.6. Solvable Groups

2. (a) Find the commutator subgroup D_{n}^{\prime} of D_{n}

Solution: Using the standard description of D_{n} via generators and relations, consider the cases $x=a^{i}$ or $x=a^{i} b$ and $y=a^{j}$ or $y=a^{j} b$.

Case 1: If $x=a^{i}$ and $y=a^{j}$, the commutator is trivial.
Case 2: If $x=a^{i}$ and $y=a^{j} b$, then $x y x^{-1} y^{-1}=a^{i} a^{j} b a^{-i} a^{j} b=$ $a^{i} a^{j} a^{i} b a^{j} b=a^{i} a^{j} a^{i} a^{-j} b^{2}=a^{2 i}$, and thus each even power of a is a commutator.

Case 3: If $x=a^{j} b$ and $y=a^{i}$, we get the inverse of the element in Case 2.
Case 4: If $x=a^{i} b$ and $y=a^{j} b$, then $x y x^{-1} y^{-1}=a^{i} b a^{j} b a^{i} b a^{j} b$, and so we get $x y x^{-1} y^{-1}=a^{i} a^{-j} b^{2} a^{i} a^{-j} b^{2}=a^{2(i-j)}$, and again we get even powers of a.

This gives the result we are looking for. If n is odd, then the commutators form the subgroup $\langle a\rangle$. If n is even, then the commutators form the subgroup $\left\langle a^{2}\right\rangle$.
(b) Prove that the dihedral group D_{n} is solvable for all n.

Solution: By part (a) the commutator subgroup D_{n}^{\prime} is either $\langle a\rangle$ or $\left\langle a^{2}\right\rangle$. In either case, the commutator subgroup is abelian, so $D_{n}^{\prime \prime}=\langle 1\rangle$, showing that D_{n} is solvable.
7. Example 7.6.3 constructed a composition series $S_{4} \supset N_{1} \supset N_{2} \supset N_{3} \supset\langle 1\rangle$ for S_{4} in which $N_{2} \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$. Show that although S_{4} has subgroups isomorphic to \mathbf{Z}_{4}, there is no composition series for S_{4} in which $N_{2} \cong \mathbf{Z}_{4}$.
Solution: Any subgroup H of S_{4} that is isomorphic to \mathbf{Z}_{4} must be generated by a 4-cycle (a, b, c, d). By Exercise 15 (b) of Section 2.3 there exists $\sigma \in S_{4}$ with
$\sigma(1,2,3,4) \sigma^{-1}=(a, b, c, d)$. That is, there exists an inner automorphism of S_{4} that maps $(1,2,3,4)$ to (a, b, c, d). Since any isomorphism will map one composition series to another, this shows that to answer the question it suffices to show that the second term in the composition series cannot be $\langle(1,2,3,4)\rangle$.

Suppose that we have a composition series $S_{4} \supset K_{1} \supset K_{2} \supset K_{3} \supset\langle 1\rangle$ in which $K_{2}=\langle(1,2,3,4)\rangle$. Then K_{2} is a normal subgroup of K_{1}, so this means we should compute the normalizer $N\left(K_{2}\right)$. We know that K_{2} is normal in the subgroup D generated by $(1,2,3,4)$ and $(2,4)$, since $D \cong D_{4}$ (see Table 3.6.1). We could also show that K_{2} is a normal subgroup of D by observing that fact K_{2} has index 2 in D.

Now $K_{2} \subset D \subseteq N\left(K_{2}\right) \subseteq S_{4}$, and since D has index 3 in S_{4}, it follows that either $D=N\left(K_{2}\right)$ or $N\left(K_{2}\right)=S_{4}$. Because $(1,2)(1,2,3,4)(1,2)=$ $(1,3,4,2) \notin K_{2}$, it follows that K_{2} is not a normal subgroup of S_{4}, and so $D=N\left(K_{2}\right)$. This forces $K_{1}=D$ in our supposed composition series, which is impossible since D is not a normal subgroup of S_{4}. (In the above calculation, $(1,2)(1,2,3,4)(1,2)=(1,3,4,2) \notin D$.
10. Let p and q be primes, not necessarily distinct.
(a) Show that any group of order $p q$ is solvable.

Solution: If $p=q$, then G has order p^{2} and is thus abelian. Hence G is solvable. If $p<q$, then the number of Sylow q-subgroups divides p and is congruent to 1 modulo q. Thus there is only one Sylow q-subgroup H of G, and so it must be normal in G. The subgroup H is simple since $|H|=q$, and G / H is also simple since $|G / H|=p$. The sequence $G \supset H \supset\{e\}$ shows that G is solvable.
(b) Show that any group of order $p^{2} q$ is solvable.

Solution: If $p=q$, then there exists a subgroup H of G with $|H|=p^{2}$ and a subgroup K of H such that $|K|=p$. The sequence $G \supset H \supset K \supset\{e\}$ shows that G is solvable.

If $p \neq q$, then we claim that one of the Sylow p-subgroups or Sylow q subgroups is normal. If there is more than one Sylow p-subgroup, then there are q Sylow p-subgroups, and $p \mid(q-1)$. If there is more than one Sylow q-subgroup, then there are p or p^{2} Sylow q-subgroups and $q \mid(p-1)$ or $q \mid\left(p^{2}-1\right)$. Since $p \mid(q-1)$ implies $p \leq q-1$, we cannot have $q \mid(p-1)$. Thus there cannot be p Sylow q-subgroups and q Sylow p-subgroups. Since $p \mid(q-1)$ we have $p \leq q-1$, and since $q \mid(p+1)(p-1)$, we must have $q=p+1$. We conclude that $p=2$ and $q=3$, and our group is of order 12. The number of Sylow 3-subgroups of a group of order 12 is 1 or 4 . If there are 4 Sylow 3 -subgroups, then since any two of these Sylow 3-subgroups must intersect in the identity element, there are $4 \cdot(3-1)=8$ elements of order 3 . The remaining 4 elements form the unique Sylow 2-subgroup, and so the Sylow 2-subgroup is normal.

Now consider the sequence $G \supset H \supset\{e\}$, where H is the normal Sylow subgroup. Then G / H either has order p^{2} or order q. In either case G / H is abelian, and so G is solvable since both G / H and H are solvable.
(c) Show that any group of order $p^{n} q$ is solvable if $p>q$.

Solution: Let G have order $p^{n} q$, with $p>q$. Since $p>q$ there is only one Sylow p-subgroup H of G, which must be normal in G. Since $|G / H|=q$, it is certainly true that G / H is solvable. Since H is a p-group, it is also solvable, and thus G is solvable.
12. Prove that any group of order 588 is solvable.

Solution: We have $588=2^{2} \cdot 3 \cdot 7^{2}$. Let S be the Sylow 7 -subgroup. It must be normal, since 1 is the only divisor of 12 that is $\equiv 1(\bmod 7)$. Since $|G / S|=12$, it is solvable by Exercise 10 (b). Furthermore, S is solvable since it is a p-group. Since both S and G / S are solvable, it follows from Corollary 7.6.8 (b) that G is solvable.
14. Let G be a finite group and suppose that N is a normal subgroup of G for which $\operatorname{gcd}(|N|,[G: N])=1$. Prove that N is a characteristic subgroup of G.

Solution: Let ϕ be any automorphism of G. Then $\phi(N)$ is a subgroup of G, with $|N|$ elements. Since $\operatorname{gcd}(|N|,[G: N])=1$, we can apply the result in the Exercise 19 of Section 7.1, which implies that $\phi(N) \subseteq N$.

7.7. Simple Groups

11. Show that there is no simple group of order 132.

Solution: Since $132=2^{2} \cdot 3 \cdot 11$, the number of Sylow 2-subgroups is $1,3,11$, or 33 ; the number of Sylow 3-subgroups is 1 , 4 , or 22 ; and the number of Sylow 11subgroups is 1 or 12 . We will focus on the Sylow 3 and 11 subgroups. If there are 4 Sylow 3-subgroups, then as in Exercise 10, we can let the group act on them to produce a homomorphism into S_{4}. Because 132 is not a divisor of $24=\left|S_{4}\right|$, this cannot be one-to-one and therefore has a nontrivial kernel. If there are 22 Sylow 3-subgroups and 12 Sylow 11-subgroups, we get too many elements: 44 of order 3 and 120 of order 11. Thus the group has either 1 Sylow 3-subgroup or 1 Sylow 11-subgroup. We conclude that a group of order 132 has a proper nontrivial normal subgroup.
17. Let F be a finite field, with $|F|=p$ (a prime number), and let P be the subgroup of $\mathrm{GL}_{n}(F)$ consisting of all upper triangular matrices with 1 in each entry along the main diagonal. Show that P is a Sylow p-subgroup of $\mathrm{GL}_{n}(F)$.

Solution: The answer to Exercise 15 gives us

$$
\left|\mathrm{GL}_{n}(F)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

which can be rewritten as

$$
\left(p^{n}-1\right) p\left(p^{n-1}-1\right) \cdots p^{n-1}(p-1)=p^{1+\cdots+(n-1)} m=p^{n(n-1) / 2} m,
$$

where $p \nmid m$ since $p \nmid\left(p^{i}-1\right)$ for $i=1, \ldots, n$.
To construct a matrix in P, we have 1 choice in the first column, p choices in the second, etc., with p^{n-1} choices in the last column. Thus $|P|=p^{n(n-1) / 2}$, and so P is a maximal p-subgroup of $\mathrm{GL}_{n}(F)$, and is therefore a Sylow p-subgroup of $\mathrm{GL}_{n}(F)$.
20. Let F be any field, and let G be the set of all rational functions over F of the form $f(x)=\frac{a x+b}{c x+d}$, where $a, b, c, d \in F$ and $a d-b c=1$. Prove that G is a group under composition of functions, and that G is isomorphic to $\operatorname{PSL}_{2}(F)$.
Solution: Define $\phi: \mathrm{SL}_{2}(F) \rightarrow G$ by setting $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=f(x)=\frac{a x+b}{c x+d}$, for each matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{SL}_{2}(F)$. Of course $\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]=$ $\left[\begin{array}{ll}a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\ c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}\end{array}\right]$ in $\mathrm{SL}_{2}(F)$. In G the operation is given as composition of functions, and so if we let $f_{i}(x)=\frac{a_{i} x+b_{i}}{c_{i} x+d_{i}}$, then we have the following calculation, which shows that ϕ respects the given operations.

$$
\begin{aligned}
\left(f_{1} \circ f_{2}\right)(x)=f_{1}\left(f_{2}(x)\right) & =\frac{a_{1}\left(\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}\right)+b_{1}}{c_{1}\left(\frac{a_{2} x+b_{2}}{c_{2} x+d_{2}}\right)+d_{1}} \\
& =\frac{a_{1}\left(a_{2} x+b_{2}\right)+b_{1}\left(c_{2} x+d_{2}\right)}{c_{1}\left(a_{2} x+b_{2}\right)+d_{1}\left(c_{2} x+d_{2}\right)} \\
& =\frac{\left(a_{1} a_{2}+b_{1} c_{2}\right) x+a_{1} b_{2}+b_{1} d_{2}}{\left(c_{1} a_{2}+d_{1} c_{2}\right) x+c_{1} b_{2}+d_{1} d_{2}}
\end{aligned}
$$

It is clear that ϕ is onto. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{ker}(\phi)$. Then $\phi(A)$ is the rational function $f(x)=\frac{a x+b}{c x+d}$, which is the identity function x if and only
if $a=d$ and $b=c=0$. It follows from Exercise 7 of Section 3.3 that $A \in$ $Z\left(\mathrm{GL}_{2}(F)\right)$. The proof of that exercise uses the centralizers of two matrices in $\operatorname{SL}_{n}(F)$, so in fact $A \in Z\left(\mathrm{SL}_{2}(F)\right)$, and therefore $\operatorname{ker}(\phi)=Z\left(\mathrm{SL}_{2}(F)\right)$. We conclude that G is a group isomorphic to $\operatorname{PSL}_{2}(F)$.

8 Galois Theory

8.1. The Galois Group of a Polynomial

8. For each of the following fields, find the Galois group of $x^{3}-2$ over the field.
(a) $\mathrm{GF}(5)$

Solution: A search in $\mathrm{GF}(5)$ for roots of $x^{3}-2$ yields one and only one: $x=-2$. Thus $x^{3}-2$ factors as $x^{3}-2=(x+2)\left(x^{2}-2 x-1\right)$. The irreducible quadratic factor will have a splitting field of degree 2 over GF(5), so by Theorem 8.1.8 the Galois group of $x^{3}-2$ over GF(5) is cyclic of order 2 .
(b) GF(7)

Solution: In this case, $x^{3}-2$ has no roots in $\mathrm{GF}(7)$, so it is irreducible. If we adjoin a root α of $x^{3}-2$ to $\operatorname{GF}(7)$, it follows from Corollary 6.6.2 that $\operatorname{GF}(7)(\alpha)$ is the splitting field of $x^{3}-2$ over GF(7). Since the splitting field has degree 3 over GF(7), it follows from Theorem 8.1.8 that the Galois group of the polynomial is cyclic of order 3 .
Comment: To show directly that we have found the correct splitting field, division of $x^{3}-2$ by $x-\alpha$ shows that $x^{3}-2=(x-\alpha)\left(x^{2}+\alpha x+\alpha^{2}\right)$. The quadratic formula then shows that 2α and 4α are the roots of $x^{2}+\alpha x+\alpha^{2}$, and so $x^{3}-2$ splits over $\operatorname{GF}(7)(\alpha)$ as $x^{3}-2=(x-\alpha)(x-2 \alpha)(x-4 \alpha)$.
(c) $\mathrm{GF}(11)$

Solution: A search in $\mathrm{GF}(11)$ for roots of $x^{3}-2$ yields one and only one: $x=7$. Then $x^{3}-2$ can be factored as $x^{3}-2=(x-7)\left(x^{2}+7 x+5\right)$, and the second factor must be irreducible. The splitting field has degree 2 over GF(11), and can be described as $\operatorname{GF}(11)[x] /\left\langle x^{2}+7 x+5\right\rangle$. Thus by Theorem 8.1.8 the Galois group of $x^{3}-2$ over $\mathrm{GF}(11)$ is cyclic of order 2 , as in part (a).
9. Find the Galois group of $x^{4}-1$ over the field $\operatorname{GF}(7)$.

Solution: We first need to find the splitting field of $x^{4}-1$ over GF(7). We have $x^{4}-1=(x-1)(x+1)\left(x^{2}+1\right)$. A quick check of ± 2 and ± 3 shows that they are not roots of $x^{2}+1$ over GF(7), so $x^{2}+1$ is irreducible over GF(7). To obtain the splitting field we must adjoin a root of $x^{2}+1$, so we get a splitting field $\mathrm{GF}(7)[x] /\left\langle x^{2}+1\right\rangle$ of degree 2 over $\mathrm{GF}(7)$.

It follows from Theorem 8.1.8 that the Galois group of $x^{4}-1$ over $\mathrm{GF}(7)$ is cyclic of order 2 .

8.2. Multiplicity of Roots

4. Find the Galois group of $x^{6}-1$ over $\operatorname{GF}(7)$.

Solution: The Galois group is trivial because $x^{6}-1$ already splits over $\mathrm{GF}(7)$. In fact, $x^{6}-1=(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)$.
Comment: By Theorem 6.5.2, $\mathrm{GF}(7)$ is the splitting field of $x^{7}-x=x\left(x^{6}-1\right)$.
8. Find a primitive element for the extension $\mathbf{Q}(\sqrt{2}, i)$ over \mathbf{Q}.

Solution: The solution of Exercise 2 (c) of Section 6.4 shows that $\mathbf{Q}(\sqrt{2}, i)=\mathbf{Q}(\alpha)$ for $\alpha=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i$.
Alternate solution: If we follow the proof of Theorem 8.2.8, we have $u=u_{1}=$ $\sqrt{2}, u_{2}=-\sqrt{2}, v=v_{1}=i$, and $v_{2}=-i$. The proof shows the existence of an element a with $u+a v \neq u_{i}+a v_{j}$ for all i and all $j \neq 1$. To find such an element we need $\sqrt{2}+a i \neq \sqrt{2}+a(-i)$ and $\sqrt{2}+a i \neq-\sqrt{2}+a(-i)$. The easiest solution is to take $a=1$, and so we consider the element $\alpha=\sqrt{2}+i$. We have $\mathbf{Q} \subseteq \mathbf{Q}(\alpha) \subseteq \mathbf{Q}(\sqrt{2}, i)$, and since $\alpha^{-1} \in \mathbf{Q}(\alpha)$, we must have $(\sqrt{2}+i)^{-1}=$ $(\sqrt{2}-i) / 3 \in \mathbf{Q}(\alpha)$. But then $\sqrt{2}-i$ belongs, and it follows immediately that $\sqrt{2}$ and i both belong to $\mathbf{Q}(\alpha)$, which gives us the desired equality $\mathbf{Q}(\alpha)=\mathbf{Q}(\sqrt{2}, i)$.
10. Let $f(x) \in \mathbf{Q}[x]$ be irreducible over \mathbf{Q}, and let F be the splitting field of $f(x)$ in \mathbf{C}. If $[F: \mathbf{Q}]$ is odd, prove that all of the roots of $f(x)$ are real.

Solution: We can assume without loss of generality that $f(x)$ is monic, so let $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots a_{1} x+a_{0}$, where $a_{i} \in \mathbf{Q}$ for $0 \leq i<n$. Define ϕ : $F \rightarrow \mathbf{C}$ by setting $\phi(z)=\bar{z}$, for all $z \in F$, where \bar{z} denotes the complex conjugate of z. For $z_{1}, z_{2} \in F$ we have $\phi\left(z_{1}+z_{2}\right)=\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$ and $\phi\left(z_{1} z_{2}\right)=\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}=\phi\left(z_{1}\right) \phi\left(z_{2}\right)$, so ϕ is a ring homomorphism since $\phi(1)=1$. Since $\operatorname{ker}(\phi)$ is a proper ideal of the field F it must be (0), and thus ϕ is one-to-one.

Since $f(x)$ has real coefficients, we have $\phi\left(a_{i}\right)=a_{i}$ for $0 \leq i<n$. If r is a root of $f(x)$, then $f(\bar{r})=\phi(f(r))=\phi(0)=0$, so \bar{r} is also a root of $f(x)$. Since F is the splitting field for $f(x)$, it is the smallest subfield of \mathbf{C} that contains all roots of $f(x)$. We conclude that $\phi(F)=F$, and so $\phi \in \operatorname{Gal}(F / \mathbf{Q})$.

Since \mathbf{Q} has characteristic zero, Theorem 8.2.6 implies that $f(x)$ has no repeated roots, and then Theorem 8.1.6 shows that $|\operatorname{Gal}(F / \mathbf{Q})|=[F: Q]$, so $\operatorname{Gal}(F / \mathbf{Q})$ has odd order. Since $|\operatorname{Gal}(F / \mathbf{Q})|$ is odd and $\phi^{2}=1_{F}$, it follows that ϕ must be the identity mapping. We conclude that $F \subseteq \mathbf{R}$, and so every root of $f(x)$ must be real.

8.3. The Fundamental Theorem of Galois Theory

4. Let $F=\mathbf{Q}(\sqrt{2}, \sqrt[3]{2})$. Find $[F: \mathbf{Q}]$ and prove that F is not normal over \mathbf{Q}.

Solution: The element $\sqrt[3]{2}$ has minimal polynomial $x^{3}-2$ over \mathbf{Q}. Since $\sqrt{2}$ has minimal polynomial $x^{2}-2$ over \mathbf{Q}, we see that $\mathbf{Q}(\sqrt{2})$ cannot be contained in $\mathbf{Q}(\sqrt[3]{2})$ since the first extension has degree 2 over \mathbf{Q} while the second has degree 3 over \mathbf{Q}. It follows that $[F: \mathbf{Q}]=6$.

If F were a normal extension of \mathbf{Q}, then since it contains one root $\sqrt[3]{2}$ of the irreducible polynomial $x^{3}-2$ it would have to contain all of the roots. But $F \subseteq \mathbf{R}$, while the other two roots of $x^{3}-2$ are non-real, so F cannot be a normal extension of \mathbf{Q}.
7. Find the order of the Galois group of $x^{5}-2$ over \mathbf{Q}.

Solution: Let G be the Galois group in question, and let ζ be a primitive 5th root of unity. Then the roots of $x^{5}-2$ are $\alpha=\sqrt[5]{2}$ and $\alpha \zeta^{j}$, for $1 \leq j \leq 4$. The splitting field over \mathbf{Q} is $F=\mathbf{Q}(\sqrt[5]{2}, \zeta)$. Since $p(x)=x^{5}-2$ is irreducible over Q by Eisenstein's criterion, it is the minimal polynomial of $\sqrt[5]{2}$. The element ζ is a root of $x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$, so its minimal polynomial is $q(x)=x^{4}+x^{3}+x^{2}+x+1$. Thus $[F: \mathbf{Q}] \leq 20$, but since the degree must be divisible by 5 and 4 , it follows that $[F: \mathbf{Q}]=20$, and therefore $|G|=20$.

Note: By Section 8.6 we will have the tools to actually compute the Galois group, which is shown in Example 8.6.2 to be F_{20}.
9. Let F be the splitting field over K of a separable polynomial. Prove that if $\operatorname{Gal}(F / K)$ is cyclic, then for each divisor d of $[F: K]$ there is exactly one field E with $K \subseteq E \subseteq F$ and $[E: K]=d$.
Solution: By assumption we are in the situation of the fundamental theorem of Galois theory, so that there is a one-to-one order-reversing correspondence between subfields of F that contain K and subgroups of $G=\operatorname{Gal}(F / K)$. Because G is cyclic of order $[F: K]$, there is a one-to-one correspondence between subgroups of G and divisors of $[F: K]$. Thus for each divisor d of $[F: K]$ there is a unique subgroup H of index d. By the fundamental theorem, $\left[F^{H}: K\right]=[G: H]$, and so $E=F^{H}$ is the unique subfield with $[E: K]=d$.

8.4. Solvability by Radicals

1. Let $f(x)$ be irreducible over \mathbf{Q}, and let F be its splitting field over \mathbf{Q}. Show that if $\operatorname{Gal}(F / \mathbf{Q})$ is abelian, then $F=\mathbf{Q}(u)$ for all roots u of $f(x)$.

Solution: Since F has characteristic zero, we are in the situation of the fundamental theorem of Galois theory. Because $\operatorname{Gal}(F / \mathbf{Q})$ is abelian, every intermediate extension between \mathbf{Q} and F must be normal. Therefore if we adjoin any root u of $f(x)$, the extension $\mathbf{Q}(u)$ must contain all other roots of $f(x)$, since it is irreducible over \mathbf{Q}. Thus $\mathbf{Q}(u)$ is a splitting field for $f(x)$, so $\mathbf{Q}(u)=F$.
2. Show that $x^{5}-4 x+2$ is irreducible over \mathbf{Q}, and is not solvable by radicals.

Solution: The polynomial $p(x)=x^{5}-4 x+2$ is irreducible over \mathbf{Q}, since it satisfies Eisenstein's criterion for the prime 2. Since $p(-2)=-22, p(-1)=5$, $p(0)=2 p(1)=-1$, and $p(2)=26$, we see that $p(x)$ has a real root between -2 and -1 , another between 0 and 1 , and a third between 1 and 2 . The derivative $p^{\prime}(x)=5 x^{4}-4$ has two real roots, so $p(x)$ has one relative maximum and one relative minimum, and thus it must have exactly three real roots. It follows as in the proof of Theorem 8.4.8 that the Galois group of $p(x)$ over \mathbf{Q} is S_{5}, and so it is not solvable.
8. Show that $x^{4}-x^{3}+x^{2}-x+1$ is irreducible over \mathbf{Q}, and use it to find the Galois group of $x^{10}-1$ over \mathbf{Q}.

Solution: We can construct the splitting field F of $x^{10}-1$ over \mathbf{Q} by adjoining a primitive 10th root of unity to \mathbf{Q}. We have $x^{10}-1=\left(x^{5}-1\right)\left(x^{5}+1\right)=$ $(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right)$. Substituting $x-1$ in the last factor yields $(x-1)^{4}-(x-1)^{3}+(x-1)^{2}-(x-1)+1=$ $\left(x^{4}-4 x^{3}+6 x^{2}-4 x+1\right)-\left(x^{3}-3 x^{2}+3 x-1\right)+\left(x^{2}-2 x+1\right)-(x-1)+1=$ $x^{4}-5 x^{3}+10 x^{2}-10 x+5$. This polynomial satisfies Eisenstein's criterion for the prime 5, which implies that the factor $x^{4}-x^{3}+x^{2}-x+1$ is irreducible over \mathbf{Q}.

The roots of this factor are the primitive 10th roots of unity, so it follows that $[F: \mathbf{Q}]=\varphi(10)=4$. The proof of Theorem 8.4.2 shows that $\operatorname{Gal}(F / \mathbf{Q}) \cong \mathbf{Z}_{10}^{\times}$, and so the Galois group is cyclic of order 4.

8.5. Cyclotomic Polynomials

12. Calculate $\Phi_{105}(x)$.

Solution: We first note that $\varphi(105)=48$. Since $\Phi_{105}(x)=\prod_{n \mid 105}\left(x^{n}-1\right)^{\mu(105 / n)}$
by Exercise 9, we have $\Phi_{105}(x)=\frac{\left(x^{3}-1\right)\left(x^{5}-1\right)\left(x^{7}-1\right)\left(x^{105}-1\right)}{(x-1)\left(x^{15}-1\right)\left(x^{21}-1\right)\left(x^{35}-1\right)}$. By Exercise 11 , because of the symmetry involved and the fact that $\operatorname{deg}\left(\Phi_{105}(x)\right)=48$, we only need to compute the first 24 coefficients of $\Phi_{105}(x)$, so we can work with powers of x modulo x^{25}.

Note that $\left(x^{15}-1\right)\left(x^{15}+1\right) \equiv-1\left(\bmod x^{25}\right), \quad\left(x^{21}-1\right)\left(x^{21}+1\right) \equiv$ $-1\left(\bmod x^{25}\right), \quad x^{35}-1 \equiv-1\left(\bmod x^{25}\right), \quad$ and $\quad x^{105}-1 \equiv-1\left(\bmod x^{25}\right)$, Thus after making these substitutions in our formula for $\Phi_{105}(x)$, we have

$$
\begin{aligned}
& \Phi_{105}(x) \equiv\left(x^{2}+x+1\right)\left(x^{5}-1\right)\left(x^{7}-1\right)\left(x^{15}+1\right)\left(x^{21}+1\right)\left(\bmod x^{25}\right) \\
& \equiv\left(1+x+x^{2}\right)\left(1-x^{5}-x^{7}+x^{12}+x^{15}-x^{20}+x^{21}-x^{22}\right)\left(\bmod x^{25}\right) \\
& \equiv\left(1+x+x^{2}-x^{5}-x^{6}-2 x^{7}-x^{8}-x^{9}+x^{12}+x^{13}+x^{14}\right. \\
&\left.\quad \quad+x^{15}+x^{16}+x^{17}-x^{20}-x^{22}-x^{24}-x^{24}\right)\left(\bmod x^{25}\right),
\end{aligned}
$$

and so we finally obtain $\Phi_{105}(x)=$
$x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2 x^{41}-x^{40}-x^{39}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}$ $-x^{24}-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^{9}-x^{8}-2 x^{7}-x^{6}-x^{5}+x^{2}+x+1$.
Remark: All of the polynomials $\Phi_{n}(x)$ that we have computed up to now have only the coefficients 0,1 , or -1 , and so one might have conjectured that this was the case for all $\Phi_{n}(x)$. However $\Phi_{105}(x)$ has the coefficient -2 for the degree 7 and degree 41 terms.

8.6. Computing Galois Groups

5. Show that the following is a complete list of the transitive subgroups of S_{4} : (i) S_{4}; (ii) A_{4}; (iii) the Sylow 2-subgroups (isomorphic to D_{4}); (iv) the cyclic subgroups of order 4 ; (v) the subgroup $V=\{(1),(1,3)(2,4),(1,2)(3,4),(1,4)(2,3)\}$.
Solution: Let H be a subgroup of S_{4} that acts transitively on $S=\{1,2,3,4\}$. This is equivalent to saying that the orbit of each $x \in S$, under the action of H, must be all of S, and so $\left[H: H_{x}\right]=|H x|=|S|=4$ for all $x \in S$. Therefore $|H|$ is divisible by 4 , so we can only have $|H|=24,12,8$, or 4 .

It is clear that the subgroups listed in (i), (ii), (iv), and (v) are transitive. The only subgroup of order 12 is A_{4}, and any subgroup of order 8 is, of course, a Sylow 2-subgroup. We know that D_{4} is isomorphic to a subgroup of S_{4}, so it follows from the Sylow theorems that every subgroup of order 8 is isomorphic to D_{4} and therefore is transitive since it contains a 4 -cycle.

We must now eliminate the subgroups of order 4 that are not on our list. Any subgroup of order 4 is contained in a Sylow 2 -subgroup, so we only need to consider subgroups isomorphic to a subgroup of D_{4}. The three subgroups of D_{4} of order 4 are given in Example 3.6.5. Letting $a=(1,2,3,4)$ and $b=(2,4)$, these subgroups are $H_{1}=\left\{e, a^{2}, b, a^{2} b\right\}=\{(1),(1,3)(2,4),(2,4),(1,3)\}, H_{2}=\langle a\rangle$, and $H_{3}=\left\{e, a^{2}, a b, a^{3} b\right\}=V$. Since H_{2} is cyclic and $H_{3}=V$, these are on our list. Since H_{1} is not transitive, it follows that any subgroup of S_{4} isomorphic to H_{1} is not transitive.

Thus our list of transitive subgroups of S_{4} is complete.
8. Show that the following is a complete list of the transitive subgroups of S_{5} : (i) S_{5}; (ii) A_{5}; (iii) any cyclic subgroup of order 5 ; (iv) the normalizer in A_{5} of any cyclic subgroup of order 5 (isomorphic to the dihedral group D_{5}); (v) the normalizer in S_{5} of any cyclic subgroup of order 5 (isomorphic to the Frobenius group F_{20}).

Solution: Let H be a subgroup of S_{5} that acts transitively on $S=\{1,2,3,4,5\}$. This is equivalent to saying that the orbit of each $x \in S$, under the action of H, must be all of S, and so $\left[H: H_{x}\right]=|H x|=|S|=5$ for all $x \in S$. Therefore $|H|$ is divisible by 5 , and so H contains a cycle of length 5 by Cauchy's theorem. This cycle generates a Sylow 5 -subgroup of H. By the Sylow theorems, the number of Sylow 5-subgroups in H is $\equiv 1(\bmod 5)$, so this number must be either 6 or 1 . We consider these two cases.

Case 1. Suppose that H contains 6 Sylow 5 -subgroups. Then H contains all 24 cycles of length 5 , and so $\left|H \cap A_{5}\right| \geq 25$. Since A_{5} is simple it cannot contain a subgroup of order 30 , so in this case $H \cap A_{5}=A_{5}$, and thus either $H=A_{5}$ or $H=S_{5}$.

Case 2. Suppose that H contains only 1 Sylow 5 -subgroup P, which is then normal in H. If $H \subseteq A_{5}$, then H contained in the normalizer of P in A_{5}, which is shown in Exercise 16 of Section 7.4 to be isomorphic to D_{5}. (Remember that P is generated by a 5 -cyclic.) Therefore $H \cong Z_{5}$ or $H \cong D_{5}$.

If H is not contained in A_{5}, then H must be contained in the normalizer of P in S_{5}. As shown in Exercise 16 of Section 7.4, this normalizer is isomorphic to F_{20}. The only possibility for a subgroup of F_{20} isomorphic to H is one of the subgroups isomorphic to \mathbf{Z}_{5}, D_{5}, or F_{20} itself.

Thus our list of transitive subgroups of S_{5} is complete.

9 UNIQUE FACTORIZATION

9.1. Unique Factorization

11. Show that $\mathbf{Z}[x]$ is not a principal ideal domain.

Solution: The factor ring $\mathbf{Z}[x] /\langle x\rangle$ is isomorphic to \mathbf{Z}, so $\langle x\rangle$ is a nonzero prime ideal that is not maximal, since \mathbf{Z} is an integral domain that is not a field. This contradicts Theorem 5.3.10.

9.2. Unique Factorization Domains

8. A commutative ring R is said to be a Noetherian ring if every ideal of R has a finite set of generators. Prove that if R is a commutative ring, then R is Noetherian if and only if for any ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq \cdots$ there exists a positive integer n such that $I_{k}=I_{n}$ for all $k>n$.

Solution: First assume that R is a Noetherian ring, and let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ideals of R. Let I be the union of the chain, so that $I=$ $\left\{x \in R \mid x \in I_{k}\right.$ for some $\left.k\right\}$. If $x, y \in I$, then there exist integers k, m such that $x \in I_{k}$ and $y \in I_{m}$. Assume without loss of generality that $k \leq m$. Then $I_{k} \subseteq I_{m}$, so $x \in I_{m}$, and therefore $x+y \in I_{m}$ since I_{m} is an ideal of R. Thus we have shown that $x+y \in I$. For any $r \in R$ we have $r x \in I_{k}$, so $r x \in I$. This shows that the union I is an ideal, so it has a finite set of generators. Each of these generators belongs to I_{k} for some k, so if we let n be the maximum of these indices, then because the ideals I_{k} form a chain it follows that all of the generators of I belong to I_{n}. Therefore $I \subseteq I_{n}$, so we must have $I_{n}=I_{n+1}=I_{n+2}=\ldots$.

Conversely, assume that the given condition holds for ascending chains of ideals of R, and let I be any ideal of R. Let x_{1} be a nonzero element of I. If $I=\left\langle x_{1}\right\rangle$, then I has a finite set of generators, and we are done. If not, let $I_{1}=\left\langle x_{1}\right\rangle$, Then there exists $x_{2} \in I-I_{1}$, and so we consider $I_{2}=\left\{a_{1} x_{1}+a_{2} x_{2} \mid a_{1}, a_{2} \in R\right\}$. The set I_{2} is an ideal, with $I_{1} \subset I_{2} \subseteq I$. If $I_{2}=I$, then I has two generators, and we are done. If not, we can choose $x_{3} \in I-I_{2}$, and then we consider $I_{3}=\left\{a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} \mid a_{1}, a_{2}, a_{3} \in R\right\}$. Because of the condition on ascending chains, this procedure cannot produce an infinite ascending chain of ideals, each properly contained in the next, and so we conclude that for some n we have $I_{n}=I$. This shows that I has n generators, completing the proof.
9. Let R be a commutative Noetherian ring. This exercise provides an outline of the steps in a proof of the Hilbert basis theorem, which states that the polynomial ring $R[x]$ is a Noetherian ring.
(a) Let I be any ideal of $R[x]$, and let I_{k} be the set of all $r \in R$ such that $r=0$ or r occurs as the leading coefficient of a polynomial of degree k in I. Prove that I_{k} is an ideal of R.

Solution: If $r, s \in I_{k}$, and either $r=0$ or $s=0$, then it is clear that $r+s \in I_{k}$. If $r \neq 0$ and $s \neq 0$, then there exist polynomials $p(x)$ and $q(x)$, each of degree k, such that r is the leading coefficient of $p(x)$, and s is the leading coefficient of $q(x)$. If $r+s=0$, then $r+s \in I_{k}$ by definition, and if not, then $r+s$ is the leading coefficient of $p(x)+q(x)$, which has degree k and belongs to I. If $a \in R$, then either $a r=0 \in I_{k}$, or $a r$ is the leading coefficient of $a p(x)$, which belongs to I and has degree k.
(b) For the ideals I_{k} in part (a), prove that there exists an integer n such that $I_{n}=$ $I_{n+1}=\cdots$.

Solution: Since $I_{k} \subseteq I_{k+1} \subseteq \cdots$ is an ascending chain of left ideals in R, this follows from Exercise 8.
(c) By assumption, each left ideal I_{k} is finitely generated (for $k \leq n$), and we can assume that it has $m(k)$ generators. Each generator of I_{k} is the leading coefficient of a polynomial of degree k, so we let $\left\{p_{j k}(x)\right\}_{j=1}^{m(k)}$ be the corresponding polynomials. Prove that $\mathcal{B}=\cup_{k=1}^{n}\left\{p_{j k}(x)\right\}_{j=1}^{m(k)}$ is a set of generators for I.
Solution: If the set \mathcal{B} is not a generating set, then among the polynomials that cannot be expressed as linear combinations of polynomials in \mathcal{B} there exists one of minimal degree, say $f(x)=a x^{k}+\cdots$. If $k<n$, then $a \in I_{k}$, and so $a=\sum_{j=1}^{m(k)} r_{j} a_{j k}$ for the generators $\left\{a_{j k}\right\}_{j=1}^{m(k)}$ of I_{k}. Then $f(x)-\sum_{j=1}^{m(k)} r_{j} p_{j k}(x)$ has lower degree, and still cannot be expressed as a linear combination of elements of \mathcal{B}. This is a contradiction. If $k \geq n$, then we have $a \in I_{n}$, and we can repeat the argument using the generators of I_{n}

Comment: We present another proof that if R is a commutative Noetherian ring, then $R[x]$ is Noetherian. It was given by Sarges, in J. reine angew. Math. 283/284 (1976), 436-437, and may be the shortest proof known.

Proof: We show that if $R[x]$ fails to be Noetherian, then so does R. Let I be an ideal of $R[x]$ that is not finitely generated, and let f_{1} be a polynomial of minimal degree in I. If such polynomials f_{i} have already been chosen, for $1 \leq i<k-1$, let f_{k} be a polynomial of minimal degree in I such that f_{k} does not belong to the ideal $\left\langle f_{1}, \ldots, f_{k-1}\right\rangle$. For $1 \leq i<k$, let $n(i)$ be the degree f_{i}, and let $a_{i} \in R$ be the leading coefficient of f_{i}. By the choice of f_{i} we have $n(1) \leq n(2) \leq \cdots$. We will show that the ideals $\left\langle a_{1}\right\rangle \subset\left\langle a_{1}, a_{2}\right\rangle \subset \cdots$ form a strictly ascending chain of ideals that does not become stationary. Suppose that $\left\langle a_{1}, \ldots, a_{k-1}\right\rangle=\left\langle a_{1}, \ldots, a_{k}\right\rangle$. Then $a_{k} \in\left\langle a_{1}, \ldots, a_{k-1}\right\rangle$, and so there exist $r_{i} \in R$ with $a_{k}=\sum_{i=1}^{k-1} r_{i} a_{i}$. Therefore the polynomial g defined by $g=f_{k}-\sum_{i=1}^{k-1} r_{i} x^{n(k)-n(i)} f_{i}$ belongs
to I, but not to the ideal $\left\langle f_{1}, \ldots, f_{k-1}\right\rangle$, and has lower degree than f_{k}. This contradicts the choice of f_{k}.

9.3. Some Diophantine Equations

5. This exercise outlines a proof that the equation $x^{4}+y^{4}=z^{2}$ has no solution in \mathbf{Z}^{+}.
(a) Suppose that there is a positive triple x, y, z such that $x^{4}+y^{4}=z^{2}$. Show that we may assume that $(x, y)=1$, and that $\left(x^{2}, y^{2}, z\right)=1$.
Solution: If $(x, y)=d$, then $x=d u$ and $y=d v$ for $u, v \in \mathbf{Z}$, and so $d^{4} u^{4}+$ $d^{4} v^{4}=z^{2}$, where $(u, v)=1$. Now $d^{4} \mid z^{2}$, and so $d^{2} \mid z$. Thus $z=d^{2} w$, for some $w \in \mathbf{Z}$, and hence $u^{4}+v^{4}=w^{2}$. Clearly $\left(u^{2}, v^{2}, w\right)=1$.
(b) Show that there exists a least positive integer z such that $x^{4}+y^{4}=z^{2}$, with $(x, y)=1, x>0$, and $y>0$.
Solution: Apply the well-ordering principle.
(c) Show that $x \not \equiv y(\bmod 2)$.

Solution: Since $(x, y)=1$, the numbers x and y cannot both be even. If both x and y are odd, then $z^{2} \equiv 2(\bmod 4)$, a contradiction.
(d) Without loss of generality, suppose that x is even and y is odd. Show that there exist positive integers $r<s,(r, s)=1, r \not \equiv s(\bmod 2)$ such that $x^{2}=2 s r$, $y^{2}=s^{2}-r^{2}$, and $z=s^{2}+r^{2}$.
Solution: Apply Exercise 30 of Section 1.2 to get $x^{2}=2 s r, y^{2}=s^{2}-r^{2}$, $z=s^{2}+r^{2}$, where $0<r<s$ and $(r, s)=1$. If $r \equiv s(\bmod 2)$, then y would be even, a contradiction.
(e) Show that r is even, and s is odd.

Solution: If s were even, then r would be odd, and so $y^{2} \equiv-1(\bmod 4)$, a contradiction.
(f) Say that $r=2 t$. Show that $(t, s)=1$, and that both t and s are squares.

Solution: Since $(2 t, s)=1$, we have $(t, s)=1$. Since $x^{2}=2 s r=4 s t$ and $(t, s)=1$, we have that s and t are squares.
(g) Show that there exist integers m, n such that $0<m<n$, $(m, n)=1$, and $t=m n, y=n^{2}-m^{2}$, and $s=n^{2}+m^{2}$.
Solution: Since t is a square, there exists a positive integer h such that $t=h^{2}$. From $y^{2}+r^{2}=s^{2}$ we get $y^{2}+\left(2 h^{2}\right)^{2}=s^{2}$. Applying Exercise 30 of Section 1.2 again, there exist integers m, n with $0<m<n,(m, n)=1$, such that $2 h^{2}=2 m n$, $y=n^{2}-m^{2}$, and $s=m^{2}+n^{2}$. Hence $t=m n, y=n^{2}-m^{2}$, and $s=n^{2}+m^{2}$.
(h) Show that both m and n are squares.

Solution: This follows since $h^{2}=m n$ and $(m, n)=1$.
(i) Say $m=a^{2}$ and $n=b^{2}$. Show that there exists $k \in \mathbf{Z}$ such that $a^{4}+b^{4}=k^{2}$, and obtain a contradiction to the choice of z in part (b) of this exercise.
Solution: Since s is a square, there exists $k \in \mathbf{Z}$ such that $x=k^{2}=m^{2}+n^{2}=$ $a^{4}+b^{4}$, and since $s>r$ and $r>0$ is even, we have $s>1$, and so $k>1$. Thus $0<k<k^{2}=s<s^{2}+r^{2}=z$. Therefore we have a solution $\left(a^{2}, b^{2}, k\right)$ to $x^{4}+y^{4}=z^{2}$, which contradicts the choice of z.
6. (a) Show that the equation $x^{4}+y^{4}=z^{4}$ has no integer solution with $x y z \neq 0$. Solution: If (r, s, t) is a solution to $x^{4}+y^{4}=z^{4}$ with $r s t \neq 0$, then $\left(r, s, t^{2}\right)$ is a solution to $x^{4}+y^{4}=z^{2}$ with $r s t^{2} \neq 0$, and this contradicts Exercise 5 .
(b) In order to prove Fermat's last theorem, show this it suffices to prove that for any odd prime p, the equation $x^{p}+y^{p}=z^{p}$ has no integer solution with $x y z \neq 0$.
Solution: Fermat's last theorem states that $x^{n}+y^{n}=z^{n}$ has no solution with $x y z \neq 0$ when $n \geq 3$. Now if $p \mid n$, where p is an odd prime, then $n=m p$ for some m, and $\left(x^{m}, y^{m}, z^{m}\right)$ is a solution to $x^{p}+y^{p}=z^{p}$ whenever (x, y, z) is a solution to $x^{n}+y^{n}=z^{n}$. If n has no odd prime divisor, then since $n \geq 3$ we have $4 \mid n$, so $n=4 k$ and $\left(x^{k}, y^{k}, z^{k}\right)$ is a solution to $x^{4}+y^{4}=z^{4}$ whenever (x, y, z) is a solution to $x^{n}+y^{n}=z^{n}$.

10 GROUPS: SELECTED TOPICS

10.1. Nilpotent Groups

5. (a) Prove that D_{n} is solvable for all n.

Solution: Using the usual description $D_{n}=\left\{a^{i} b^{j} \mid 0 \leq i<n, 0 \leq j<2\right\}$, with $b a=a^{-1} b$, we know that $\langle a\rangle$ is a normal subgroup of index 2 , and since the factor group is also abelian, we have produced a series of normal subgroups of D_{n} that shows that it is solvable.
(b) Prove that D_{n} is nilpotent if and only if n is a power of 2 .

Solution: It was shown in Exercise 22 of Section 3.6 that if n is odd, then the center of D_{n} is trivial, and if $n=2 m$ is even, then the center of D_{n} is $\left\{e, a^{m}\right\}$. We will show that D_{n} is nilpotent if and only if n is a power of 2 , with the help of the following lemma.

Lemma: If $n=2 m$ is even, then $D_{n} /\left\langle a^{m}\right\rangle \cong D_{m}$.
Proof: Let $D_{m}=\left\{c^{i} d^{j} \mid 0 \leq i<m, 0 \leq j<2\right\}$, and define $\phi: D_{n} \rightarrow D_{m}$ by setting $\phi\left(a^{i} b^{j}\right)=c^{i} d^{j}$, for $0 \leq i<n$ and $0 \leq j<2$. It is clear that ϕ defines a group homomorphism from D_{n} onto D_{m}, and that $\operatorname{ker}(\phi)=$ $\left\{a^{i} \mid i \equiv 0(\bmod m)\right\}=\left\langle a^{m}\right\rangle$.

We now show that D_{n} is nilpotent if and only if n is a power of 2 . First suppose that $n=2^{k}$. Then $\left|D_{n}\right|=2^{k+1}$, so D_{n} is a 2-group and therefore nilpotent.

Conversely, suppose that $n=2^{k} m$, where m is an odd integer. Then in the ascending central series $Z_{i}\left(D_{n}\right)$, the first term is the center $\left\langle a^{2^{k-1} m}\right\rangle$. To calculate the next term, we note that the image of $\left\langle a^{2^{k-2} m}\right\rangle$ in $D_{n} /\left\langle a^{2^{k-1} m}\right\rangle$ is its center, so $Z_{2}\left(D_{n}\right)=\left\langle a^{2^{k-2} m}\right\rangle$, and $D_{n} / Z_{2}\left(D_{n}\right) \cong D_{2^{k-2} m}$. Continuing in this fashion, we arrive at $Z_{k}\left(D_{n}\right)$, with $D_{n} / Z_{k}\left(D_{n}\right) \cong D_{m}$. Since the center of this factor group is trivial, the series terminates, and therefore D_{n} is not nilpotent.
6. Use Theorem 10.1.7 to prove that any factor group of a finite nilpotent group is again nilpotent.

Solution: Let N be a normal subgroup of G, and suppose that H / N is a maximal subgroup of G / N. The correspondence between subgroups of G / N and subgroups of G that contain N shows that H is a maximal subgroup of G, and so it is normal in G by Theorem 10.1.7. It follows that H / N is a normal subgroup of G / N, and thus Theorem 10.1.7 implies that G / N is nilpotent.

10.2. Internal Semidirect Products of Groups

5. Let G be the subgroup of $\mathrm{GL}_{3}(\mathrm{GF}(2))$ generated by the following matrices:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(a) List the elements of G.

Solution: The following matrices form the smallest subgroup N of $G L_{3}(\mathrm{GF}(2))$ containing the first two of the given matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] .
$$

Note that each nonidentity element has order two.
Multiplying these matrices on the left by the third matrix interchanges the bottom two rows; multiplying on the right by the third matrix interchanges the two right hand columns. Either calculation produces the four additional matrices that make up the required subgroup G :

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] .
$$

(b) Find elements $a, b \in G$ with $o(a)=4, o(b)=2, b a=a^{3} b$, and conclude that G is isomorphic to D_{4}. Identify the subgroups that show that it is an internal semidirect product of a cyclic subgroup of order 4 by a subgroup of order 2 .
Solution: We need to find an element of order 4, and setting $a=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ provides one, with $a^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ and $a^{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$. We can let b be any element not in this subgroup, say $b=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. Then
$b a=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ and
$a^{3} b=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$,
showing that $G \cong D_{4}$, and it is the internal semidirect product of the normal
subgroup $\langle a\rangle=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\right\}$ by the subgroup $\langle b\rangle=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\right\}$.
(c) Show that G is the internal semidirect product of a normal subgroup N isomorphic to the Klein four-group V by a subgroup of order 2.
Solution: Let $N=$
$\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\right\}$, the elements of the form $\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & 0 & 1\end{array}\right]$, and let $K=\left\{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\right\}$. Then
$N \cap K=\{I\}$, and so a counting argument shows that $N K=G$. Since N has index 2 in G, it is normal, and thus $G=N \rtimes K$. A short calculation shows that each element in N has order 2, and therefore N is isomorphic to the Klein four-group.
7. Let $n=2 m$, where m is an odd integer ≥ 3. Show that the dihedral group D_{n} is the internal semidirect product of a cyclic group of order m by a subgroup isomorphic to the Klein four-group.
Solution: Let $D_{n}=\left\{a^{i} b^{j} \mid 0 \leq i<n, 0 \leq j<2\right\}$, where $o(a)=n, o(b)=2$, and $b a=a^{-1} b$. Let $N=\left\langle a^{2}\right\rangle$ and $K=\left\{e, a^{m}, b, a^{m} b\right\}$. It is easily checked that K is a subgroup, and since each nontrivial element has order 2, it is isomorphic to the Klein four-group. If $a^{i} \in N$, where i is even, then $b a^{i} b^{-1}=a^{-i} \in N$, so N is a normal subgroup. Since every power of a^{2} is even, we have $N \cap K=\{e\}$, and then it is clear that $N K=D_{n}$, completing the proof.
8. Let m, n be positive integers. Show that the direct product $\mathbf{Z}_{m} \times D_{n}$ is the internal semidirect product of a normal subgroup isomorpic to $\mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$ by a subgroup of order 2.

Solution: Let $D_{n}=\left\{a^{i} b^{j} \mid 0 \leq i<n, 0 \leq j<2\right\}$, where $o(a)=n, o(b)=2$, and $b a=a^{-1} b$. Let $N=\left\{\left(x, a^{i}\right) \mid x \in \mathbf{Z}_{m}, 0 \leq i<n\right\}$ and let $K=\langle(0, b)\rangle$. Then N is a subgroup of $\mathbf{Z}_{m} \times D_{n}$ by Exercise 11 of Section 3.3, it is normal since it has index 2 , and it is clear that $N K=\mathbf{Z}_{m} \times D_{n}$. Thus $\mathbf{Z}_{m} \times D_{n}=N \rtimes K$, and it is easy to check that $N \cong \mathbf{Z}_{m} \oplus \mathbf{Z}_{n}$.

10.3. External Semidirect Products of Groups

6. Let C_{4} be the cyclic group of order 4 , written multiplicatively, and let α be the only nontrivial group homomorphism from C_{4} into $\operatorname{Aut}\left(\mathbf{Z}_{3}\right) \cong C_{2}$. Find elements a of order 6 and b of order 4 with $b^{2}=a^{3}$ and $b a=a^{-1} b$ such that $\mathbf{Z}_{3} \rtimes_{\alpha} C_{4}$ can be described as $\left\{a^{i} b^{j} \mid 0 \leq i<6,0 \leq j<2\right\}$.

Solution: We will use the given subgroups $C_{4}=\{ \pm 1, \pm i\}$ and $C_{2}=\{ \pm 1\}$ of \mathbf{C}^{\times}. Since $\operatorname{Aut}\left(\mathbf{Z}_{3}\right) \cong C_{2}$, the only nontrivial homomorphism $\alpha: C_{4} \rightarrow C_{2}$ is defined by $\alpha(i)=-1$, and then $\alpha(-1)=1$ and $\alpha(-i)=-1$. Thus α_{-1} is the identity automorphism, while α_{i} and α_{-i} represent a change of sign.

Let $a=(1,-1)$ and $b=(0, i)$ in $\mathbf{Z}_{3} \rtimes_{\alpha} C_{4}$. We have
$a^{2}=(1,-1) \cdot(1,-1)=\left(1+\alpha_{-1}(1),(-1)(-1)\right)=(1+1,1)=(2,1)$, $a^{3}=(1,-1) \cdot(2,1)=\left(1+\alpha_{-1}(2),(-1)(1)\right)=(1+2,-1)=(0,-1)$, $a^{4}=(1,-1) \cdot(0,-1)=\left(1+\alpha_{-1}(0),(-1)(-1)\right)=(1+0,1)=(1,1)$, $a^{5}=(1,-1) \cdot(1,1)=\left(1+\alpha_{-1}(1),(-1)(1)\right)=(1+1,-1)=(2,-1)$, $a^{6}=(1,-1) \cdot(2,-1)=\left(1+\alpha_{-1}(2),(-1)(-1)\right)=(1+2,1)=(0,1)$, and so $o(a)=6$. In general, $(x, y) \cdot(0, z)=\left(x+\alpha_{y}(0), y z\right)=(x, y z)$, so $b^{2}=(0,-1), b^{3}=(0,-i)$, and $b^{4}=(0,1)$, and thus b has order 4. From the above list of powers of a, it is clear that each element of $\mathbf{Z}_{3} \rtimes_{\alpha} C_{4}$ has the form a^{i} or $a^{i} b$, for $0 \leq i<6$.

From the above calculations, $b^{2}=(0,-1)=a^{3}$, and $b a=(0, i) \cdot(1,-1)=$ $\left(0+\alpha_{i}(1),(i)(-1)\right)=(0-1,-i)=(2,-i)$ while $a^{-1} b=a^{5} b=(2,-1)$. $(0, i)=(2,-i)$, and so $b a=a^{-1} b$.
Comment: Since $b^{2}=a^{3}$, we have $a^{2} b^{2}=a^{5}, a^{4} b^{2}=a, b^{3}=a^{3} b, a^{2} b^{3}=$ $a^{5} b$, and $a^{4} b^{3}=a b$. Thus can also write $\mathbf{Z}_{3} \rtimes_{\alpha} C_{4}=\left\{a^{2 i} b^{j} \mid 0 \leq i<3,0 \leq j<4\right\}$.
7. Let V be the Klein four-group, written multiplicatively, and let $\alpha: V \rightarrow \operatorname{Aut}\left(\mathbf{Z}_{3}\right)$ be any nontrivial group homomorphism. Show that $\mathbf{Z}_{3} \rtimes_{\alpha} V \cong D_{6}$.

Solution: By Example 10.3.3 we are free to consider any linear action of V on a cyclic group of order 3, written additively. Since each nontrivial element of \mathbf{Z}_{12}^{\times} has order 2, it is isomorphic to V, and since $\mathbf{Z}_{12}^{\times}=\operatorname{Aut}\left(\mathbf{Z}_{12}\right)$, it acts linearly on \mathbf{Z}_{12}. As in Example 10.3.4, we will make use of a subgroup of the holomorph \mathcal{H}_{12} of \mathbf{Z}_{12}.

We can identity $\mathbf{Z}_{12}^{\times}=\{ \pm 1, \pm 5\}$ with V, and we can identity the cyclic subgroup $N=\{0,4,8\} \subseteq \mathbf{Z}_{12}$ with \mathbf{Z}_{3}. Since this subgroup is also an ideal of the ring \mathbf{Z}_{12}, each element of $\operatorname{Aut}\left(\mathbf{Z}_{12}\right)$ maps N to N. We conclude that multiplication in \mathbf{Z}_{12} defines a linear action of \mathbf{Z}_{12}^{\times}on N.

In the semidirect product $N \rtimes_{\alpha} \mathbf{Z}_{12}^{\times}$, let $a=(4,-5)$ and let $b=(0,-1)$. Then $(0,-1) \cdot(0,-1)=(0+(-1)(0),(-1)(-1))=(0,1)$, and so b has order 2 . We also have $a^{2}=(4,-5) \cdot(4,-5)=(4+(-5)(4),(-5)(-5))=(8,1)$,

$$
\begin{aligned}
& a^{3}=(4,-5) \cdot(8,1)=(4+(-5)(8),(-5)(1))=(0,-5) \\
& a^{4}=(4,-5) \cdot(0,-5)=(4+(-5)(0),(-5)(-5))=(4,1) \\
& a^{5}=(4,-5) \cdot(4,1)=(4+(-5)(4),(-5)(1))=(8,-5) \\
& a^{6}=(4,-5) \cdot(8,-5)=(4+(-5)(8),(-5)(-5))=(0,1)
\end{aligned}
$$

$$
\text { and so } o(a)=6 . \text { Since }(x, y)(0,-1)=(x,-y) \text {, it follows easily from the above }
$$ list of powers of a that each element of $N \rtimes_{\alpha} \mathbf{Z}_{12}^{\times}$has the form a^{i} or $a^{i} b$, for $0 \leq i<6$. Furthermore, $b a=(0,-1) \cdot(4,-5)=(0+(-1)(4),(-1)(-5))=$ $(8,5)$ and $a^{5} b=(8,-5) \cdot(0,-1)=(8+(-5)(0),(-5)(-1))=(8,5)$, and so we conclude that $\mathbf{Z}_{3} \rtimes_{\alpha} V \cong N \rtimes_{\alpha} \mathbf{Z}_{12}^{\times}$is isomorphic to the dihedral group D_{6}.

8. Using the isomorphism between \mathbf{Z}_{5}^{\times}and $\operatorname{Aut}\left(\mathbf{Z}_{5}\right)$, define an action $\mu: \mathbf{Z}_{5}^{\times} \rightarrow \mathbf{Z}_{5}^{\times}$ of \mathbf{Z}_{5}^{\times}on \mathbf{Z}_{5} by $\mu(x)=x^{2}$, for all $x \in \mathbf{Z}_{5}^{\times}$.
(a) Find elements a of order 10 and b of order 4 with $b^{2}=a^{5}$ and $b a=a^{-1} b$ such that $\mathbf{Z}_{5} \rtimes_{\mu} \mathbf{Z}_{5}^{\times}$can be described as $\left\{a^{i} b^{j} \mid 0 \leq i<10,0 \leq j<2\right\}$.
Solution: Let $\mathbf{Z}_{5}^{\times}=\{ \pm 1, \pm 2\}$ and $\mathbf{Z}_{5}=\{0,1,2,3,4\}$. Since $\operatorname{Aut}\left(\mathbf{Z}_{5}\right) \cong \mathbf{Z}_{5}^{\times}$, the homomorphism μ defines a linear action of \mathbf{Z}_{5}^{\times}on \mathbf{Z}_{5} in which $\mu_{k}(n)=\mu(k) \cdot n=$ $k^{2} n$, for $k \in \mathbf{Z}_{5}^{\times}, n \in \mathbf{Z}_{5}$. Let $a=(1,-1)$ and $b=(0,2)$. For $\left(n_{1}, k_{1}\right),\left(n_{2}, k_{2}\right) \in$ $\mathbf{Z}_{5} \rtimes_{\mu} \mathbf{Z}_{5}^{\times}$we have $\left(n_{1}, k_{1}\right) \cdot\left(n_{2}, k_{2}\right)=\left(n_{1}+\left(k_{1}\right)^{2} n_{2}, k_{1} k_{2}\right)$, so in particular $(1,-1) \cdot(n, k)=(1+n,-k)$ and $\left(0, k_{1}\right) \cdot\left(0, k_{2}\right)=\left(0, k_{1} k_{2}\right)$. It follows that $\langle a\rangle=$ $\{(0,1),(1,-1),(2,1),(3,-1),(4,1),(0,-1),(1,1),(2,-1),(3,1),(4,-1)\}$ and $\langle b\rangle=\{(0,1),(0,2),(0,-1),(0,-2)\}$. Thus $b^{2}=a^{5}$, and $b a b^{-1}=$ $(0,2) \cdot(1,-1) \cdot(0,-2)=(0+4 \cdot 1,-2) \cdot(0,-2)=(4,-2) \cdot(0,-2)=(4+4 \cdot 0,-1)=$ $(4,-1)=a^{9}$, and so $b a=a^{-1} b$. Furthermore, $(n, 1) \cdot(0,2)=(n, 2)$ and $(n,-1) \cdot(0,2)=(n,-2)$ so it is clear that $G=\left\{a^{i} b^{j} \mid 0 \leq i<10,0 \leq j<2\right\}$.
(b) Show that the Frobenius group F_{20} has no element of order 10. Conclude that $\mathbf{Z}_{5} \rtimes_{\mu} \mathbf{Z}_{5}^{\times}$is not isomorphic to $\mathbf{Z}_{5} \rtimes_{l} \mathbf{Z}_{5}^{\times} \cong F_{20}$.

Solution: In F_{20} an element of the form $\left[\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right]$ has order 5 if $x \neq 0$. Since $\left[\begin{array}{ll}1 & 0 \\ x & a\end{array}\right]^{4}=\left[\begin{array}{cc}1 & 0 \\ y & a^{4}\end{array}\right]$, where $y=x\left(1+a+a^{2}+a^{3}\right)$, it follows that $\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right]$ has order 4 for $a=2,3,4$. (A routine calculation shows that $1+a+a^{2}+a^{3}=0$ for $a=2,3,4$.) Therefore F_{20} has no element of order 10 .
10. Let N and K be groups, let $\alpha, \beta: K \rightarrow \operatorname{Aut}(N)$ be group homomorphisms, let $\gamma \in \operatorname{Aut}(N)$, and define $\phi: N \rtimes_{\alpha} K \rightarrow N \rtimes_{\beta} K$ by setting $\phi((n, k))=(\gamma(n), k)$, for all $n \in N, k \in K$. Show that ϕ is an isomorphism if and only if $\beta=i_{\gamma} \alpha$, where i_{γ} is the inner automorphism of $\operatorname{Aut}(N)$ determined by γ.
Solution: We have defined ϕ by setting $\phi((n, k))=(\gamma(n), k)$, for all $n \in N$, $k \in K$, so it is clear that ϕ is one-to-one and onto since γ is an automorphism.

For $n_{1}, n_{2} \in N$ and $k_{1}, k_{2} \in K$, we have

$$
\begin{aligned}
\phi\left(\left(n_{1}, k_{1}\right)\left(n_{2}, k_{2}\right)\right) & =\phi\left(\left(n_{1} \alpha_{k_{1}}\left(n_{2}\right), k_{1} k_{2}\right)\right) \\
& =\left(\gamma\left(n_{1} \alpha_{k_{1}}\left(n_{2}\right)\right), k_{1} k_{2}\right) \\
& =\left(\gamma\left(n_{1}\right) \gamma\left(\alpha_{k_{1}}\left(n_{2}\right)\right), k_{1} k_{2}\right) \\
\phi\left(\left(n_{1}, k_{1}\right)\right) \phi\left(\left(n_{2}, k_{2}\right)\right) & =\left(\gamma\left(n_{1}\right), k_{1}\right)\left(\gamma\left(n_{2}\right), k_{2}\right) \\
& =\left(\gamma\left(n_{1}\right) \beta_{k_{1}}\left(\gamma\left(n_{2}\right)\right), k_{1} k_{2}\right)
\end{aligned}
$$

Thus ϕ preserves the respective multiplications if and only if $\gamma\left(\alpha_{k}(n)\right)=\beta_{k}(\gamma(n))$ for all $n \in N$ and $k \in K$. We can write this as $\gamma \alpha_{k}=\beta_{k} \gamma$, for all $k \in K$, and so $\beta_{k}=\gamma \alpha_{k} \gamma^{-1}$, for all $k \in K$. Therefore $\beta(k)=i_{\gamma} \alpha(k)$, for all $k \in K$.

10.4. Classification of Groups of Small Order

6. Show that the holomorph $\mathcal{H}_{n}=\mathbf{Z}_{n} \rtimes_{\alpha} \mathbf{Z}_{n}^{\times}$of \mathbf{Z}_{n} can be represented as the set of matrices of the form $\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right]$, where $x \in \mathbf{Z}_{n}$ and $a \in \mathbf{Z}_{n}^{\times}$.

Solution: The first issue is that up to this point we have only considered matrices with entries in a field, and these matrices have entries in a commutative ring \mathbf{Z}_{n}. The standard proof that multiplication of matrices is associative (when the entries are from a field) remains valid when the entries come from a commutative ring R, and it is clear that $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is a multiplicative identity element. If $a, b, c, d \in R$, then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]=(a d-b c)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ since R is commutative, and so the matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if its determinant $a d-b c$ is a unit of R. These observations show that the matrices we are considering are invertible. In fact, $\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & 0 \\ -a^{-1} x & a^{-1}\end{array}\right]$, since a is a unit of \mathbf{Z}_{n}.

For $(x, a) \in \mathbf{Z}_{n} \rtimes_{\alpha} \mathbf{Z}_{n}^{\times}$, define $\phi((x, a))=\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right]$. Then ϕ is a group homomorphism since $\phi\left(\left(x_{1}, a_{1}\right)\left(x_{2}, a_{2}\right)\right)=\phi\left(\left(x_{1}+a_{1} x_{2}, a_{1} a_{2}\right)\right)=$ $\left[\begin{array}{cc}1 & 0 \\ x_{1}+a_{1} x_{2} & a_{1} a_{2}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ x_{1} & a_{1}\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ x_{2} & a_{2}\end{array}\right]=\phi\left(\left(x_{1}, a_{1}\right)\right) \phi\left(\left(x_{2}, a_{2}\right)\right)$. It is clear that ϕ is one-to-one and onto, and so ϕ is an isomorphism.
9. Consider the holomorph $\mathcal{H}_{15}=\mathbf{Z}_{15} \rtimes \mathbf{Z}_{15}^{\times}$of \mathbf{Z}_{15}, using its representation from Exercise 6 as matrices of the form $\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right]$, where $x \in \mathbf{Z}_{15}$ and $a \in \mathbf{Z}_{15}^{\times}$. Note that \mathbf{Z}_{15}^{\times}has three cyclic subgroups of order 2: $\langle-1\rangle,\langle 4\rangle$, and $\langle-4\rangle$.
(a) Let G_{1} be the subgroup of \mathcal{H}_{15} with $a \in\langle-1\rangle$. Show that $G_{1} \cong D_{15}$.

Solution: Let $c=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, and $d=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. Then $o(c)=15, o(d)=2$, and $d c=c^{-1} d$ since the action of $\langle-1\rangle$ on \mathbf{Z}_{15} changes the sign. Thus $G_{1} \cong$ D_{15}.
(b) Let G_{2} be the subgroup of \mathcal{H}_{15} with $a \in\langle 4\rangle$. Show that $G_{2} \cong \mathbf{Z}_{3} \times D_{5}$.

Solution: Let $b=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$. We have $\mathbf{Z}_{15}=5 \mathbf{Z}_{15} \oplus 3 \mathbf{Z}_{15} \cong \mathbf{Z}_{3} \oplus \mathbf{Z}_{5}$.
Since $4 \cdot 5=20 \equiv 5(\bmod 15)$ and $4 \cdot 3=12 \equiv-3(\bmod 15)$, the element b acts as the identity on $5 \mathbf{Z}_{15}$ and changes the sign on $3 \mathbf{Z}_{15}$. Let $H=$ $\left\{\left.\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right] \right\rvert\, x \in 5 \mathbf{Z}_{15}, a=1\right\}, K=\left\{\left.\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right] \right\rvert\, x \in 3 \mathbf{Z}_{15}, a \in\langle 4\rangle\right\}$.

Then H is cyclic of order 3 , so $H \cong \mathbf{Z}_{3}$, and $K \cong D_{5}$ since it is a nonabelian group of order 10. We have $H \cap K=\{I\}$, so $H K=G_{2}$. To show that G_{2} is the internal direct product of H and K we will show that elements of H and K commute. Let $\left[\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right] \in H$ and let $\left[\begin{array}{ll}1 & 0 \\ x & a\end{array}\right] \in K$. Then $\left[\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ x & a\end{array}\right]=$ $\left[\begin{array}{cc}1 & 0 \\ y+x & a\end{array}\right]$, while $\left[\begin{array}{ll}1 & 0 \\ x & a\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ y & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ x+a y & a\end{array}\right]$. But (as shown above) since $a=1$ or $a=4$ and $y=0,5,10$, we have $a y \equiv y(\bmod 15)$, and so the elements commute.
(c) Let G_{3} be the subgroup of \mathcal{H}_{15} with $a \in\langle-4\rangle$. Show that $G_{3} \cong \mathbf{Z}_{5} \times D_{3}$.

Solution: Let $b=\left[\begin{array}{rr}1 & 0 \\ 0 & -4\end{array}\right]$. We have $\mathbf{Z}_{15}=3 \mathbf{Z}_{15} \oplus 5 \mathbf{Z}_{15} \cong \mathbf{Z}_{5} \oplus \mathbf{Z}_{3}$. Since $-4 \cdot 3=-12 \equiv 3(\bmod 15)$ and $-4 \cdot 5=-20 \equiv-5(\bmod 15)$, the element b acts as the identity on $3 \mathbf{Z}_{15}$ and changes the sign on $5 \mathbf{Z}_{15}$. As in part (b), it can be checked that G_{3} is the internal direct product of H and K, for
$H=\left\{\left.\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right] \right\rvert\, x \in 3 \mathbf{Z}_{15}, a=1\right\}, K=\left\{\left.\left[\begin{array}{cc}1 & 0 \\ x & a\end{array}\right] \right\rvert\, x \in 5 \mathbf{Z}_{15}, a \in\langle-4\rangle\right\}$.
Furthermore, $H \cong \mathbf{Z}_{5}$ and $K \cong D_{3}$, as required.
(d) Show that the groups G_{1}, G_{2}, G_{3} represent three distinct isomorphism classes.

Solution: We can distinguish between the groups by looking at their centers. Exercise 22 of Section 3.6 shows that the center of D_{n} is trivial if n is odd. It is easy to check that the center of a direct product is the direct product of the centers. Thus
the center of G_{1} is trivial, the center of G_{2} is its Sylow 3-subgroup, and the center of G_{3} is its Sylow 5-subgroup.
10. Show that any nonabelian group of order 30 is isomorphic to $D_{15}, \mathbf{Z}_{3} \times D_{5}$, or $\mathbf{Z}_{5} \times D_{3}$.

Solution: Let G be a group of order $30=2 \cdot 3 \cdot 5$. By Theorem 7.4.4 the number of Sylow 5-subgroups is 1 or 6 , and the number of Sylow 3-subgroups is 1 or 10 . If neither of these Sylow subgroups were normal, then G would contain $6 \cdot 4=24$ elements of order 5 and and $10 \cdot 2=20$ elements of order 3, which is impossible. We conclude that either the Sylow 5-sybgroup or the Sylow 3-subgroup is normal.

Suppose that the Sylow 5-subgroup P_{5} is normal. Then $\left|G / P_{5}\right|=6$ has a subgroup of index 2 since G / P_{5} is isomorphic to \mathbf{Z}_{6} or S_{3}. Proposition 3.8.7 shows that G has a corresponding subgroup of index 2 , which must be normal. If the Sylow 3-subgroup P_{3} is normal, then $\left|G / P_{3}\right|=10$, and again G has a normal subgroup of index 2 since the same is true for G / P_{3}, which isomorphic to \mathbf{Z}_{10} or D_{5}.

Since a subgroup of order 15 is isomorphic to \mathbf{Z}_{15}, we conclude that G is the internal semidirect product of a normal cyclic group of order 15 by a subgroup of order 2. By Theorem 10.4.4, we can consider the possible external semidirect products. These are determined by a group homomorphism $\alpha: C_{2} \rightarrow \mathbf{Z}_{15}^{\times}$. Let $\mathbf{Z}_{15}^{\times}=\{ \pm 1, \pm 2, \pm 4, \pm 8\}$. The image of α in \mathbf{Z}_{15}^{\times}is $\{1\}$ or one of three cyclic subgroups of order $2:\langle-1\rangle,\langle 4\rangle$, and $\langle-4\rangle$. Thus there are at most 3 isomorphism classes of nonabelian external semidirect products $\mathbf{Z}_{15} \rtimes_{\alpha} C_{2}$. The desired conclusion, that G is belongs to one of the isomorphism classes represented by D_{15}, $\mathbf{Z}_{3} \times D_{5}$, or $\mathbf{Z}_{5} \times D_{3}$, now follows from Exercise 9 .

