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iv PREFACE

PREFACE

My goal is to provide some help in reviewing Chapters 7 and 8 of our book Abstract Algebra.
I have included summaries of most of these sections, together with some general comments. The
review problems are intended to have relatively short answers, and to be more typical of exam
questions than of standard textbook exercises.

By assuming that this is a review, I have been able make some minor changes in the order of
presentation. The first section covers various examples of groups. In presenting these examples, I
have introduced some concepts that are not studied until later in the text. I think it is helpful to
have the examples collected in one spot, so that you can refer to them as you review.

A complete list of the definitions and theorems in the text can be found on the web site
www.math.niu.edu/∼beachy/aaol/ . This site also has some group multiplication tables that
aren’t in the text. I should note two minor changes in notation–I’ve used 1 to denote the identity
element of a group (instead of e), and I’ve used the abbreviation “iff” for “if and only if”.

Abstract Algebra begins at the undergraduate level, but Chapters 7–9 are written at a level that
we consider appropriate for a student who has spent the better part of a year learning abstract
algebra. Although it is more sharply focused than the standard graduate level textbooks, and does
not go into as much generality, I hope that its features make it a good place to learn about groups
and Galois theory, or to review the basic definitions and theorems.

Finally, I would like to gratefully acknowledge the support of Northern Illinois University while
writing this review. As part of the recognition as a “Presidential Teaching Professor,” I was given
leave in Spring 2000 to work on projects related to teaching.

DeKalb, Illinois John A. Beachy
May 2000

In this new printing the references have been updated to the third edition of the text. Otherwise,
the changes are relatively minor.

DeKalb, Illinois John A. Beachy
December 2006



Chapter 7

STRUCTURE OF GROUPS

The goal of a structure theory is to find the basic building blocks of the subject and then learn how
they can be put together. In group theory the basic building blocks are usually taken to be the
simple groups, and they fit together by “stacking” one on top of the other, using factor groups.

To be more precise about this, we need to preview Definition 7.6.9. Let G be a group. A chain
of subgroups G = N0 ⊇ N1 ⊇ . . . ⊇ Nk is called a composition series for G if

(i) Ni is a normal subgroup of Ni−1 for i = 1, 2, . . . , k,
(ii) Ni−1/Ni is simple for i = 1, 2, . . . , k, and
(iii) Nk = 〈1〉

The factor groups Ni−1/Ni are called the composition factors of the series. The number n is called
the length of the series.

We can always find a composition series for a finite group G, by choosing N1 to be a maximal
normal subgroup of G, then choosing N2 to be a maximal normal subgroup of N1, and so on. The
Jordan-Hölder theorem (see Theorem 7.6.10) states that any two composition series for a finite group
have the same length. Furthermore, there exists a one-to-one correspondence between composition
factors of the two composition series, under which corresponding factors are isomorphic.

Unfortunately, the composition factors of a group G do not, by themselves, completely determine
the group. We still need to know how to put them together. That is called the “extension problem”:
given a group G with a normal subgroup N such that N and G/N are simple groups, determine the
possibilities for the structure of G. The most elementary possibility for G is that G = N ×K, for
some normal subgroup K with K ∼= G/N , but there are much more interesting ways to construct G
that tie the groups N and G/N together more closely.

What is known as the Hölder program for classifying all finite groups is this: first classify all
finite simple groups, then solve the extension problem to determine the ways in which finite groups
can be built out of simple composition factors. This attack on the structure of finite groups was
begun by Otto Hölder (1859–1937) in a series of papers published during the period 1892–1895.

The simple abelian groups are precisely the cyclic groups of prime order, and groups whose
simple composition factors are abelian form the class of solvable groups, which plays an important
role in Galois theory. Galois himself knew that the alternating groups An are simple, for n ≥ 5, and
Camille Jordan (1838–1922) discovered several classes of simple groups defined by matrices over Zp,
where p is prime. Hölder made a search for simple nonabelian groups, and showed that for order
200 or less, the only ones are A5, of order 60, and the group GL3(Z2) of all invertible 3× 3 matrices
with entries in Z2, which has order 168.

1



2 CHAPTER 7. STRUCTURE OF GROUPS

7.0 Some Examples

Summary: It is impossible to overemphasize the importance of examples.

Since this is a review of material you have already covered, it makes sense to group together the
examples you have worked with. It is important to use them to deepen your understanding of the
definitions and theorems. They can also be used to help you generate ideas on how to solve specific
exercises and exam questions.

Cyclic groups

Cyclic groups are classified in Theorem 3.5.2: if G is infinite, then the powers of its generator
are distinct, and G is isomorphic to the group Z; if G is cyclic of order n, with generator a, then
am = ak iff k ≡ m (mod n), and G is isomorphic to Zn. Since every subgroup of a cyclic group
is cyclic, the nonzero subgroups of Z correspond to the cyclic subgroups generated by the positive
integers. The nonzero subgroups of Zn correspond to the proper divisors of n. In multiplicative
terminology, if G is cyclic of order n, with generator a, then the subgroup generated by am coincides
with the subgroup generated by ad, where d = gcd(m,n), and so this subgroup has order n/d. (This
subgroup structure is described in Propositions 3.5.3 and 3.5.4.)

Figure 7.0.1
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〈6〉

Z12

〈0〉

〈2〉

〈4〉

Figure 7.0.1 gives the subgroups of Z12. Any path from Z12 to 〈0〉 produces a composition series
for Z12. In fact, there are the following three choices.

Z12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈0〉

Z12 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈0〉

Z12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈0〉

All composition series for Zn can be determined from the prime factorization of n.
How can you recognize that a given group is cyclic? Of course, if you can actually produce a

generator, that is conclusive. Another way is to compute the exponent of G, which is the smallest
positive integer n such that gn = 1, for all g ∈ G. Proposition 3.5.9 (b) states that a finite abelian
group is cyclic if and only if its exponent is equal to its order. For example, in Theorem 6.5.10 this
characterization of cyclic groups is used to prove that any finite subgroup of the multiplicative group
of a field is cyclic.

Direct products
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Recall that the direct product of two groups G1 and G2 is the set of all ordered pairs (x1, x2),
where x1 ∈ G1 and x2 ∈ G2, with the componentwise operation (x1, x2) · (y1, y2) = (x1y1, x2y2) (see
Definition 3.3.3 and Proposition 3.3.4). This construction can be extended to any finite number of
groups, and allows us to produce new examples from known groups. Note that when the groups
involved are abelian, and are written additively, many authors use the notation A1 ⊕ A2 instead of
A1 ×A2.

The opposite of constructing a new group from known groups is to be able to recognize when a
given group can be constructed from simpler known groups, using the direct product. In the case
of the cyclic group Zn, we have the following result from Proposition 3.4.5. If the positive integer n
has a factorization n = km, as a product of relatively prime positive integers, then Zn ∼= Zk × Zm.

This is proved by defining a group homomorphism φ : Zn → Zk × Zm by setting φ([x]n) =
([x]k, [x]m). Since the two sets have the same number of elements, it suffices to show either that φ is
onto or that ker(φ) = {[0]n}. The statement that φ is onto is precisely the statement of the Chinese
remainder theorem (see Theorem 1.3.6 for the statement and proof). That the kernel is zero follows
from elementary number theory: if k | x and m | x, then km | x, since k and m are relatively prime.

The above result can be extended to show that any finite cyclic group is isomorphic to a direct
product of cyclic groups of prime power order. (See Theorem 3.5.5, whose proof uses the prime
factorization of |G|.) This is a special case of the structure theorem for finite abelian groups, and
Figure 7.0.2 uses this approach to give another way to view the subgroups of the cyclic group Z12,
and to find a composition series for it.

Figure 7.0.2
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Z4 × 〈0〉

〈2〉 × 〈0〉

Z4 × Z3

〈(0, 0)〉

〈2〉 × Z3

〈0〉 × Z3

Using the decomposition Z12
∼= Z4 × Z3, we have the following composition series.

Z4 × Z3 ⊃ Z4 × 〈0〉 ⊃ 〈2〉 × 〈0〉 ⊃ 〈(0, 0)〉

Z4 × Z3 ⊃ 〈2〉 × Z3 ⊃ 〈2〉 × 〈0〉 ⊃ 〈(0, 0)〉
Z4 × Z3 ⊃ 〈2〉 × Z3 ⊃ 〈0〉 × Z3 ⊃ 〈(0, 0)〉

Theorem 7.1.3 gives one possible way to recognize a direct product. Let G be a group with
normal subgroups H,K such that HK = G and H ∩K = 〈1〉. Then G ∼= H ×K. Note that the
conditions of the theorem imply that any element of H must commute with any element of K.

With the above notation, it may happen that H ∩ K = 〈1〉 and HK = G, even though only
one of the subgroups is normal in G. This situation defines what is called the semidirect product
of H and K, and provides an important tool in classifying finite groups. Unfortunately, the use of
semidirect products is beyond the scope of our text. (They are covered in the supplement that is
available on the book’s web site.)

Finite abelian groups

The simplest way to approach the structure of a finite abelian group is to remember that it
can be written as a direct product of cyclic groups. Just saying this much does not guarantee any
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uniqueness. There are two standard ways to do this decomposition in order to achieve a measure of
uniqueness. The cyclic groups can each be broken apart as much as possible, yielding a decomposition
into groups of prime power order. These cyclic groups are unique, but in the direct product they
can be written in various orders. A second method arranges the cyclic groups into a direct product
in which the order of each factor is a divisor of the order of the previous factor. This is illustrated
by the following two decompositions of the group Z12 × Z18, which has order 23 · 33.

Z12 × Z18
∼= Z4 × Z2 × Z9 × Z3

∼= Z36 × Z6

The symmetric groups Sn

The symmetric group Sn is defined as the set of all permutations of the set {1, . . . , n} (see
Definition 3.1.5). These groups provided the original motivation for the development of group
theory, and a great many of the general theorems on the structure of finite groups were first proved
for symmetric groups. This class of groups is the most basic of all, in the sense that any group of
order n is isomorphic to a subgroup of Sn. Recall that this is the statement of Cayley’s theorem,
which can be proved using the language of group actions, by simply letting the group act on itself
via the given multiplication. (See Theorem 3.6.2.) One important fact to remember about Sn is
that two permutations are conjugate in Sn iff they have the same number of cycles, of the same
length.

The alternating groups An

Any permutation in Sn can be written as a product of transpositions, and although the expression
is not unique, the number of transpositions is well-defined, modulo 2. In fact, if we define π : Sn →
Z× by setting π(σ) = 1 if σ is even and π(σ) = −1 if σ is odd, then π is a well-defined group
homomorphism whose kernel is the alternating group An consisting of the even permutations in Sn.

For n = 3, the series S3 ⊃ A3 ⊃ 〈1〉 is a composition series. Theorem 7.7.4 shows that the
alternating group An is simple if n ≥ 5, so in this case we have the composition series Sn ⊃ An ⊃ 〈1〉.
Problem 7.0.4 shows that S4 has a normal subgroup N2 ⊆ A4 with S4/N2

∼= S3 and N2
∼= Z2 × Z2,

and so it has a composition series

S4 ⊃ A4 ⊃ N2 ⊃ N3 ⊃ 〈1〉

with A4/N2
∼= Z3, N2/N3

∼= Z2, and N3
∼= Z2.

It is also possible to give some information about the conjugacy classes of An. Let σ ∈ An, let
CA(σ) be the centralizer of σ in An, and let CS(σ) be the centralizer of σ in Sn. If CS(σ) ⊆ An,
then CS(σ) = CA(σ), and in this case σ has |An|/|CS(σ)| conjugates, representing half as many
conjugates as it has in Sn. On the other hand, if CS(σ) contains an odd permutation, then CA(σ)
has half as many elements as CS(σ), and so σ has the same conjugates in An as in Sn.

The dihedral groups Dn

The dihedral group Dn is defined for n ≥ 3 in Definition 3.6.3 as the group of rigid motions of a
regular n-gon. In terms of generators and relations, we can describe Dn as generated by an element
a of order n, and an element b of order 2, subject to the relation ba = a−1b. The elements can
then be put in the standard form aibj , where 0 ≤ i < n and 0 ≤ j < 2. The important formula to
remember is that bai = a−ib. A composition series for Dn can be constructed by using the fact that
〈a〉 is a maximal normal subgroup with 〈a〉 ∼= Zn.

The conjugacy classes of Dn can be computed easily, and provide excellent examples of this
crucial concept. Exercise 7.2.13 of the text shows that am is conjugate to itself and a−m, while amb
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is conjugate to am+2kb, for any k ∈ Z. Thus if n is odd, the center of Dn is trivial, and if n is even,
it contains 1 and an/2. In the first case the centralizer of b contains only b and 1, while in the second
it contains the center as well. Thus in the second case b is conjugate to exactly half of the elements
of the form aib.

The general linear groups GLn(F )

The general linear groups over finite fields provide the typical examples of finite groups. To be
more specific, we start with a finite field F . The set of n × n invertible matrices with entries in F
forms a group under multiplication that is denoted by GLn(F ). (You will find that other authors
may use the notation GL(n, F ).)

It is quite common to begin the study of nonabelian groups with the symmetric groups Sn. Of
course, this class contains all finite groups as subgroups, but the size also quickly gets out of hand.
On the other hand, Problem 7.0.1 shows that GLn(F ) also contains a copy of each group of order n,
and working with matrices allows use of ideas from linear algebra, such as the determinant and the
trace. Note that Exercise 7.7.11 in the text shows that |GLn(F )| = (qn − 1)(qn − q) · · · (qn − qn−1).

The first step in constructing a composition series for GLn(F ) is to use the determinant function.
Since the determinant preserves products, it defines a group homomorphism ∆ : GLn(F )→ F× from
GLn(F ) onto the multiplicative group of the field F . We use the notation SLn(F ) for the set of
invertible matrices with determinant 1, so we have SLn(F ) = ker(∆). The group F× is cyclic, since
F is finite, so GLn(F )/SLn(F ) ∼= Zq−1, where |F | = q.

We note two special cases. First, Example 3.4.5 shows that GL2(Z2) ∼= S3, and it is obvious that
SL2(Z2) = GL2(Z2). Secondly, the group GL2(Z3) has (32 − 1)(32 − 3) = 48 elements. The center
of GL2(Z3) consists of scalar matrices, and these all have determinant 1. This gives us a series of
normal subgroups

GL2(Z3) ⊃ SL2(Z3) ⊃ Z(GL2(Z3))

in which SL2(Z3)/Z(GL2(Z3)) has 12 elements. Example 7.7.2 and Exercise 7.7.13 in the text show
that this factor group is isomorphic to A4, and with this knowledge it is possible to refine the above
series to a composition series for GL2(Z3).

The special linear groups SLn(F )

The group SLn(F ) is called the special linear group over F . Its center can be shown to be

Z(SLn(F )) = SLn(F ) ∩ Z(GLn(F )) .

The center may be trivial in certain cases, but in any event, Z(SLn(F )) is isomorphic to a subgroup
of the additive group of the field, so it is an abelian group, and we can construct a composition
series for it as before.

In constructing a composition series for GLn(F ), we have the following series,

GLn(F ) ⊃ SLn(F ) ⊃ Z(SLn(F )) ⊃ 〈1〉 ,

in which the factors GLn(F )/SLn(F ) and Z(SLn(F )) are abelian. These two factors can be handled
easily since they are abelian, so the real question is about SLn(F )/Z(SLn(F )), which is called the
projective special linear group, and is denoted by PSLn(F ). The following theorem is beyond the
scope of our text; we only prove the special case n = 2 (see Theorem 7.7.9). You can find the proof
of the general case in Jacobson’s Basic Algebra I.

Theorem. If F is a finite field, then PSLn(F ) is a simple group, except for the special cases n = 2
and |F | = 2 or |F | = 3.
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REVIEW PROBLEMS: SECTION 7.0

1. Prove that if G is a group of order n, and F is any field, then GLn(F ) contains a subgroup
isomorphic to G.

2. What is the largest order of an element in Z×200?

3. Let G be a finite group, and suppose that for any two subgroups H and K either H ⊆ K or
K ⊆ H. Prove that G is cyclic of prime power order.

4. Let G = S4 and N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Prove that N is normal, and
that G/N ∼= S3.

5. Problem 4 can be used to construct a composition series S4 ⊃ N1 ⊃ N2 ⊃ N3 ⊃ 〈1〉 in which
N1 = A4 and N2

∼= Z2 × Z2. Show that there is no composition series in which N2
∼= Z4.

6. Find the center of the alternating group An.

7. In a group G, any element of the form xyx−1y−1, with x, y ∈ G, is called a commutator of G.

(a) Find all commutators in the dihedral group Dn. Using the standard description of Dn via
generators and relations, consider the cases x = ai or x = aib and y = aj or y = ajb.

(b) Show that the commutators of Dn form a normal subgroup N of Dn, and that Dn/N is
abelian.

8. Prove that SL2(Z2) ∼= S3.

9. Find |PSL3(Z2)| and |PSL3(Z3)|.

10. For a commutative ring R with identity, define GL2(R) to be the set of invertible 2×2 matrices
with entries in R. Prove that GL2(R) is a group.

11. Let G be the subgroup of GL2(Z4) defined by the set
{[

m b
0 1

]}
such that b ∈ Z4 and

m = ±1. Show that G is isomorphic to a known group of order 8.

Hint: The answer is either D4 or the quaternion group (see Example 3.3.7).

12. Let G be the subgroup of GL3(Z2) defined by the set


 1 0 0
a 1 0
b c 1

 such that a, b, c ∈ Z2.

Show that G is isomorphic to a known group of order 8.

7.1 Isomorphism theorems

Summary: This section investigates some useful applications of the fundamental homomorphism
theorem.

The first step is to review the definition of a factor group, given in Section 3.8. Let H be a
subgroup of the group G, and let a ∈ G. The set aH = {ah | h ∈ H} is called the left coset of H
in G determined by a. The right coset of H in G determined by a is defined similarly as Ha. The
number of left cosets of H in G is called the index of H in G, and is denoted by [G : H].

The subgroup N of G is called normal if gxg−1 ∈ N , for all g ∈ G and all x ∈ N . The subgroup
N is normal iff its left and right cosets coincide, and in this case the set of cosets of N forms a group
under the coset multiplication given by aNbN = abN , for all a, b ∈ G. The group of left cosets
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of N in G is called the factor group of G determined by N , and is denoted by G/N . The natural
projection mapping π : G→ G/N defined by π(x) = xN , for all x ∈ G, is a group homomorphism,
with ker(π) = N .

Here are some elementary facts about normal subgroups (you should prove any that raise ques-
tions in your mind).

(i) Any intersection of normal subgroups is again normal.
(ii) If N is normal in G and H is a subgroup of G, then N ∩H is normal in H.
(iii) If N is normal in H and H is normal in G, we can’t, in general, say that N is normal in G.
(iv) The center Z(G) = {x ∈ G | gx = xg ∀g ∈ G} of G is a normal subgroup.

Let G be a group with normal subgroup N . The next list of statements contains some good
problems on which to test your understanding of factor groups.

(i) If a ∈ G has finite order, then the order of the coset aN in G/N is a divisor of the order of a.
(ii) The factor group G/N is abelian iff aba−1b−1 ∈ N , for all a, b ∈ G.
(iii) If N is a subgroup of Z(G), and G/N is cyclic, then G must be abelian.

At this stage, the right way to think of normal subgroups is to view them as kernels of group
homomorphisms. If N = ker(φ), for the group homomorphism φ : G1 → G2, then for any y ∈ G2

the solutions in G1 of the equation φ(x) = y form the coset x1N , where x1 is any particular solution,
with φ(x1) = y. The elements of each left coset aN can be put in a one-to-one correspondence with
N . This shows how neatly the algebraic properties of φ set up a one-to-one correspondence between
elements of the image φ(G1) and cosets of ker(φ). (The one-to-one correspondence φ is defined by
setting φ(aN) = φ(a).) The fundamental homomorphism theorem shows that φ preserves the group
multiplications that are defined respectively on the elements of the image of φ and on the cosets of
ker(φ). The formal statement is given next.

Theorem 3.8.9 (Fundamental homomorphism theorem) If φ : G1 → G2 is a group homo-
morphism with K = ker(φ), then the factor group G1/K is isomorphic to the image φ(G1) of φ.

The accompanying diagram, in Figure 7.1.0, shows how φ can be written as φ = i φ π, where π is
an onto homomorphism, φ is an isomorphism, and i is a one-to-one homomorphism. This diagram
is often given without the inclusion mapping i, so the figure shows both versions.

Figure 7.1.0

G1/K φ(G1)

G2G1

φ

φ
π i

-

-

?
6

G1/K

G2G1

φ

φ
π

-

? ��
�
�*

Proposition 3.8.7 (b) states that if N is a normal subgroup of G, then there is a one-to-one
correspondence between subgroups of G/N and subgroups H of G with H ⊇ N . Under this corre-
spondence, normal subgroups correspond to normal subgroups.

It is very important to understand this proposition. The function that determines the correspon-
dence between subgroups that contain N and subgroups of G/N is the one that maps a subgroup
H ⊇ N to its image π(H), where π : G → G/N is the natural projection. In more concrete terms,
the function just maps an element a ∈ H to the corresponding coset aN . The inverse function
assigns to a subgroup of cosets the union of all of the elements that belong to the cosets. It is
particularly important to understand this relationship in the case G = Z and N = nZ.
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The second isomorphism theorem shows that any factor group of G/N can actually be realized
as a factor group of G. Any normal subgroup of G/N has the form H/N , where H is a normal
subgroup of G that contains N . Factoring out H/N can then be shown to be equivalent to G/H.

Theorem 7.1.2 (Second isomorphism theorem) Let G be a group with normal subgroups N
and H such that N ⊆ H. Then H/N is a normal subgroup of G/N , and (G/N) / (H/N) ∼= G/H .

The proof of the second isomorphism theorem makes use of the fundamental homomorphism
theorem. We need to define a homomorphism φ from G/N onto G/H, in such a way that ker(φ) =
H/N . We can use the natural mapping defined by φ(aN) = aH for all a ∈ G, and this gives the
isomorphism φ (see Figure 7.1.1.).

Figure 7.1.1

(G/N) / (H/N)

G/HG/N
φ

φπ ��
�*

?

-

The first isomorphism theorem also deals with the relationship between subgroups of G and
subgroups of G/N , where N is a normal subgroup of G. If H is any subgroup of G, then the image
of H under the natural projection π : G → G/N is π(H) = HN/N . To see this, note that the set
π(H) consists of all cosets of N of the form aN , for some a ∈ H. The corresponding subgroup of G is
HN (under the correspondence given in Theorem 3.8.7 (b)), and then the one-to-one correspondence
shows that π(H) = HN/N .

Theorem 7.1.1 (First isomorphism theorem) Let G be a group, let N be a normal subgroup
of G, and let H be any subgroup of G. Then HN is a subgroup of G, H ∩N is a normal subgroup
of H, and (HN) /N ∼= H / (H ∩N) .

Figure 7.1.2
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The proof of the first isomorphism theorem also uses the fundamental homomorphism theorem.
Let i : H → G be the inclusion, and let π : G→ G/N be the natural projection (see Figure 7.1.2.).
The composition of these mappings is a homomorphism whose image is HN/N , and whose kernel
is H ∩N . Therefore H/(H ∩N) ∼= (HN)/N .

Let G be a group. An isomorphism from G onto G is called an automorphism of G. An
automorphism of G of the form ia, for some a ∈ G, where ia(x) = axa−1 for all x ∈ G, is called an
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inner automorphism of G. The set of all automorphisms of G will be denoted by Aut(G) and the
set of all inner automorphisms of G will be denoted by Inn(G).

Proposition 7.1.4 justifies part of the definition, showing that if G is a group, then for any
a ∈ G the function ia : G → G defined by ia(x) = axa−1 for all x ∈ G is an automorphism.
Propositions 7.1.6 and 7.1.8 show that Aut(G) is a group under composition of functions, and
Inn(G) is a normal subgroup of Aut(G), with Inn(G) ∼= G/Z(G). The automorphisms of a group
play an important role in studying its structure.

In the case of a cyclic group, it is possible to give a good description of the automorphism
group. The automorphism group Aut(Zn) of the cyclic group on n elements is isomorphic to the
multiplicative group Z×n . To show this, first note that every element α ∈ Aut(Zn) must have the
form α([m]) = [α(1) ·m], for all [m] ∈ Zn. Then α(1) must be relatively prime to n, and it can be
verified that Aut(Zn) ∼= Z×n .

REVIEW PROBLEMS: SECTION 7.1

16. Let G1 and G2 be groups of order 24 and 30, respectively. Let G3 be a nonabelian group that
is a homomorphic image of both G1 and G2. Describe G3, up to isomorphism.

17. Prove that a finite group whose only automorphism is the identity map must have order at
most two.

18. Let H be a nontrivial subgroup of Sn. Show that either H ⊆ An, or exactly half of the
permutations in H are odd.

19. Let p be a prime number, and let A be a finite abelian group in which every element has order
p. Show that Aut(A) is isomorphic to a group of matrices over Zp.

20. Let G be a group and let N be a normal subgroup of G of finite index. Suppose that H is a
finite subgroup of G and that the order of H is relatively prime to the index of N in G. Prove
that H is contained in N .

21. Let G be a finite group and let K be a normal subgroup of G such that gcd(|K|, [G : K]) = 1.
Prove that K is a characteristic subgroup of G.

Note: Recall the definition given in Exercise 7.6.8 of the text. The subgroup K is a charac-
teristic subgroup of G if φ(K) ⊆ K for all φ ∈ Aut(G). In this case we say that K is invariant
under all automorphisms of G.

22. Let N be a normal subgroup of a group G. Suppose that |N | = 5 and |G| is odd. Prove that
N is contained in the center of G.

7.2 Conjugacy

Summary: Counting the elements of a finite group via its conjugacy classes leads to the class equation
and provides a surprising amount of information about the group.

Let G be a group, and let N be a subgroup of G. By definition, N is normal in G if axa−1 ∈ N ,
for all x ∈ N and all a ∈ G. In Definition 7.2.1, an element y ∈ G is said to be conjugate conjugate
to the element x ∈ G if there exists a ∈ G with y = axa−1. This defines an equivalence relation
on G (Proposition 7.2.2), whose equivalence classes are called the conjugacy classes of G. It follows
immediately from the definition of a normal subgroup that a subgroup N is normal in G iff it is a
union of conjugacy classes, since if x ∈ N then all conjugates of x must also belong to N .
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At this point we switch to a somewhat more sophisticated point of view. Since looking at
elements of the form axa−1 is so important, a deeper analysis shows that we should work with the
inner automorphisms of G. By Proposition 7.1.8, for any group G, we have Inn(G) ∼= G/Z(G).
To understand this isomorphism, simply assign to each element a ∈ G the inner automorphism ia.
Then ia ◦ ib = iab, and the kernel of the mapping is the center Z(G), since ia is the identity function
iff axa−1 = x for all x ∈ G, or equivalently, iff ax = xa for all x ∈ G. We also need the definition
of the centralizer of x in G, denoted by C(x) = {g ∈ G | gxg−1 = x}. Proposition 7.2.4 shows that
C(x) is a subgroup of G.

Proposition 7.2.5 gives us an important connection. If x is an element of the group G, and
a ∈ C(x), then conjugating x by a does not produce a different element. In general, the conjugate
axa−1 produced by a depends of the left coset of C(x) to which a belongs. In fact, the elements
of the conjugacy class of x are in one-to-one correspondence with the left cosets of the centralizer
C(x) of x in G. Since any conjugate of x is the image of x under an isomorphism, we can expect
the conjugates of x to have properties similar to of x.

The concept of conjugacy is nicely illustrated in Sn. Example 7.2.3 shows that two permutations
in the symmetric group Sn, are conjugate iff they have the same cycle structure. That is, iff they
have the same number of disjoint cycles, of the same lengths. The crucial argument is that if σ
is a cycle in Sn, then τστ−1(τ(i)) = τ(σ(i)) for all i, and thus τστ−1 is the cycle constructed by
applying τ to the entries of σ. The result is a cycle of the same length.

The next theorem provides the main tool in this section.

Theorem 7.2.6 (Class Equation) If G is a finite group, then the conjugacy class equation is
stated as follows:

|G| = |Z(G)|+
∑

[G : C(x)]

where the sum ranges over one element x from each nontrivial conjugacy class.

Recall that a group of order pn, with p a prime number and n ≥ 1, is called a p-group. The class
equation has important applications to these groups. Burnside’s theorem (Theorem 7.2.8) states
that the center of any p-group is nontrivial (p is prime). It can then be shown that any group of
order p2 is abelian (p is prime). As another consequence of the conjugacy class equation, Cauchy’s
theorem (Theorem 7.2.10) states that if G is a finite group and p is a prime divisor of the order of
G, then G contains an element of order p.

REVIEW PROBLEMS: SECTION 7.2

19. Prove that if the center of the group G has index n, then every conjugacy class of G has at
most n elements.

20. Let G be a group with center Z(G). Prove that G/Z(G) is abelian iff for each element x 6∈ Z(G)
the conjugacy class of x is contained in the coset Z(G)x.

21. Find all finite groups that have exactly two conjugacy classes.

22. Let G be the dihedral group with 12 elements, given by generators a, b with |a| = 6, |b| = 2,
and ba = a−1b. Let H = {1, a3, b, a3b}. Find the normalizer of H in G and find the subgroups
of G that are conjugate to H.

23. Write out the class equation for the dihedral group Dn. Note that you will need two cases:
one when n is even, and one when n is odd.

24. Show that for all n ≥ 4, the centralizer of the element (1, 2)(3, 4) in Sn has order 8 · (n− 4)!.
Determine the elements in CSn((1, 2)(3, 4)) explicitly.
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7.3 Group actions

Summary: This section introduces the notion of a group action, and shows that a generalized class
equation holds. Clever choices of group actions allow this class equation to be mined for information.

One possible approach in studying the structure of a given group is to find ways to “represent”
it via a “concrete” group of permutations. To be more precise, given the group G we would like to
find an associated set S and a group homomorphism φ : G→ Sym(S), where Sym(S) is the group of
all permutations on the set S. If we can find a homomorphism like this, note that for any g ∈ G the
value φ(g) is a permutation of S, so it acts as a function on S. We will use the shorthand notation
[φ(g)](x) = g · x, for g ∈ G and x ∈ S. This shorthand notation can really simplify things if φ(g)
has a complicated definition.

For example, for any group G we have the homomorphism φ : G→ Aut(G) defined by φ(a) = ia,
where ia is the inner automorphism defined by a, given by ia(x) = axa−1, for all x ∈ G. The
shorthand notation in this case is to define a · x = axa−1. Then we use Gx = {a · x | a ∈ G} to
denote the conjugacy class of x, since Gx consists of all elements of the form axa−1, for a ∈ G. Note
that since Aut(G) is a subgroup of Sym(G), we actually have φ : G→ Sym(G).

This idea leads to the notion of a group “acting” on a set (Definition 7.3.1). Let G be a group
and let S be a set. A multiplication of elements of S by elements of G (defined by a function from
G × S → S) is called a group action of G on S provided for each x ∈ S: (i) a(bx) = (ab)x for all
a, b ∈ G, and (ii) 1 · x = x for the identity element 1 of G.

It is interesting to see when ax = bx, for some a, b ∈ G and x ∈ S. If b = ah for some h ∈ G
such that hx = x, then bx = (ah)x = a(hx) = ax. Actually, this is the only way in which ax = bx,
since if this equation holds, then x = (a−1b)x, and b = ah for h = a−1b. This can be expressed in
much more impressive language, using the concepts of “orbit” and “stabilizer”.

We need to look at a couple of examples. First, if G is a subgroup of a group S, then G acts in
a natural way on S by just using the group multiplication in S. Secondly, if G is the multiplicative
group of nonzero elements of a field, and V is any vector space over the field, then the scalar
multiplication on V defines an action of G on V .

There is a close connection between group actions and certain group homomorphisms, as shown
by Proposition 7.3.2. Let G be a group and let S be a set. Any group homomorphism from G into
the group Sym(S) of all permutations of S defines an action of G on S. Conversely, every action of
G on S arises in this way.

Definition 7.3.3 and Propositions 7.3.4 and 7.3.5 establish some of the basic notation and results.
Let G be a group acting on the set S. For each element x ∈ S, the set Gx = {ax | a ∈ G} is called
the orbit of x under G, and the set Gx = {a ∈ G | ax = x} is called the stabilizer of x in G. The
orbits of the various elements of S form a partition of S. The stabilizer is a subgroup, and there is
a one-to-one correspondence between the elements of the orbit Gx of x under the action of G and
the left cosets of the stabilizer Gx of x in G. If G is finite, this means that the number of elements
in an orbit Gx is equal to the index [G : Gx] of the stabilizer.

The conjugacy class equation has a direct analog for group actions. First we need to define the
set SG = {x ∈ S | ax = x for all a ∈ G} which is called the subset of S fixed by G.

Theorem 7.3.6 (Generalized Class Equation) Let G be a finite group acting on the finite set
S. Then

|S| = |SG|+
∑

Γ[G : Gx] ,

where Γ is a set of representatives of the orbits Gx for which |Gx| > 1.

Lemma 7.3.7 gives an interesting result when G is a p-group acting on a finite set S. In this case,
|SG| ≡ |S| (mod p). With a clever choice of the group and the set, this simple result can be used to
give another proof of Cauchy’s theorem. (Check out the proof of Theorem 7.3.8.) Finally, we have
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a result that is very useful in showing that a group G is not a simple group. (This proposition is
not given in the text.)

Proposition Let G be a group of order n, and assume that G acts nontrivially on a set S with k
elements. If n is not a divisor of k!, then G has a proper nontrivial normal subgroup.

Proof: The given action of G on S defines a homomorphism φ : G → Sym(S). Since the action is
nontrivial, ker(φ) is a proper normal subgroup of G. We cannot have ker(φ) = 〈1〉, because this
would mean that G is isomorphic to a subgroup of Sym(S), and hence n would be a divisor of
|Sym(S)| = k!. 2

Here is one strategy to use in proving that a group G is not simple. If you can find a large
enough subgroup H of G, let G act on the set of left cosets of H via g ·aH = (ga)H. If H has index
[G : H] = k, and |G| is not a divisor of k!, then G cannot be simple. On the other hand, if you can
find a subgroup H with a small number of conjugate subgroups, then you can let G act on the set
of conjugates of H by setting g · aHa−1 = (ga)H(ga)−1. If H has k conjugates, and |G| is not a
divisor of k!, then G cannot be simple. (Actually the second situation can be handled like the first,
since the number of conjugates of H is the same as the index in G of the normalizer of H.)

REVIEW PROBLEMS: SECTION 7.3

15. Let G be a group which has a subgroup of index 6. Prove that G has a normal subgroup whose
index is a divisor of 720.

16. Let G act on the subgroup H by conjugation, let S be the set of all conjugates of H, and let
φ : G→ Sym(S) be the corresponding homomorphism. Show that ker(φ) is the intersection of
the normalizers N(aHa−1) of all conjugates of H.

17. Let F = Z3, G = GL2(F ), and S = F 2. Find the generalized class equation (see Theo-
rem 7.3.6) for the standard action of G on S.

18. Let F = Z3, G = GL2(F ), and let N be the center of G. Prove that G/N ∼= S4 by defining an
action of G on the four one-dimensional subspaces of F 2.

7.4 The Sylow theorems

Summary: Our goal is to give a partial converse to Lagrange’s theorem.

Lagrange’s theorem states that if G is a group of order n, then the order of any subgroup of G
is a divisor of n. The converse of Lagrange’s theorem is not true, as shown by the alternating group
A4, which has order 12, but has no subgroup of order 6. The Sylow theorems give the best attempt
at a converse, showing that if pα is a prime power that divides |G|, then G has a subgroup of order
pα. The proofs in the text use group actions (they are simpler than the original proofs). Before
studying the proofs, make sure you are comfortable with group actions. Otherwise the machinery
may confuse you rather than enlighten you.

Let G be a finite group, and let p be a prime number. A subgroup P of G is called a Sylow
p-subgroup of G if |P | = pα for some integer α ≥ 1 such that pα is a divisor of |G| but pα+1 is not.
The statements of the second and third Sylow theorems use this definition, and their proofs require
Lemma 7.4.3, which states that if |G| = mpα, where α ≥ 1 and p 6 | m, and P is a normal Sylow
p-subgroup, then P contains every p-subgroup of G.
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Theorems 7.4.1, 7.4.4 (The Sylow Theorems) Let G be a finite group, and let p be a prime
number.

(a) If p is a prime such that pα is a divisor of |G| for some α ≥ 0, then G contains a subgroup of
order pα.

(b) All Sylow p-subgroups of G are conjugate, and any p-subgroup of G is contained in a Sylow
p-subgroup.

(c) Let n = mpα, with gcd(m, p) = 1, and let k be the number of Sylow p-subgroups of G. Then
k ≡ 1 (mod p) and k is a divisor of m.

Outline of the proof: Let P be a Sylow p-subgroup of G with |P | = pα, let S be the set of all
conjugates of P , and let P act on S by conjugation. First show that the only member of S left fixed
by the action of P is P itself, so |SP | = 1, and therefore |S| ≡ 1 (mod p).

Next let Q be any maximal p-subgroup, and now let Q act on S by conjugation. Then |SQ| ≡
1 (mod p), so some conjugate K of P must be left fixed by Q, and it can be shown that Q ⊆ K,
and therefore Q = K. This implies not only that all Sylow p-subgroups are conjugate, but that
any maximal p-subgroup is a Sylow p-subgroup. Now S is the set of all Sylow p-subgroups of G, so
k ≡ 1 (mod p). Finally, k = [G : N(P )], so k|m since [G : N(P )] | [G : P ]. 2

In the review problems the notation np(G) will be used to denote the number of Sylow p-
subgroups of the finite group G.

REVIEW PROBLEMS: SECTION 7.4

15. By direct computation, find the number of Sylow 3-subgroups and the number of Sylow 5-
subgroups of the symmetric group S5. Check that your calculations are consistent with the
Sylow theorems.

16. How many elements of order 7 are there in a simple group of order 168?

17. Let G be a group of order 340. Prove that G has a normal cyclic subgroup of order 85 and an
abelian subgroup of order 4.

18. Show that any group of order 100 has a normal subgroup of order 25.

19. Show that there is no simple group of order 200.

20. Show that a group of order 108 has a normal subgroup of order 9 or 27.

21. Let p be a prime number. Find all Sylow p-subgroups of the symmetric group Sp.

22. Let G be the group of matrices
{[

1 0
x a

]}
such that x ∈ Z7 and a ∈ Z×7 .

(a) Find n7(G), and find a Sylow 7-subgroup of G.

(b) Find n3(G), and find a Sylow 3-subgroup of G.

23. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of G, then the
number of Sylow p-subgroups of N is the same as that of G.

24. Prove that if G is a group of order 105, then G has a normal Sylow 5-subgroup and a normal
Sylow 7-subgroup.
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7.5 Finite abelian groups

Summary: The goal of this section is to prove that any finite abelian group is isomorphic to a direct
product of cyclic groups of prime power order.

Any finite abelian group is a direct product of cyclic groups. To obtain some uniqueness for this
decomposition, we can either split the group up as far as possible, into cyclic groups of prime power
order, or we can combine some factors so that the cyclic groups go from largest to smallest, and the
order of each factor is a divisor of the previous one.

In splitting a finite abelian group up into cyclic groups of prime power order, the first step is
to split it into its Sylow subgroups. This decomposition is unique, because each Sylow p-subgroup
consists precisely of the elements whose order is a power of p.

In studying abelian groups it is quite common to use additive notation rather than multiplicative
notation. In this context, if (G,+) is an abelian group with subgroups H1, . . ., Hn, and each element
g ∈ G can be written uniquely in the form g = h1 + . . . + hn, with hi ∈ Hi, we say that G is the
direct sum of the subgroups H1, . . ., Hn, and write G = H1 ⊕ · · · ⊕ Hn. With this terminology,
Theorem 7.5.3 states that any finite abelian group is the direct sum of its Sylow p-subgroups.

Lemma 7.5.5 is important in understanding the general decomposition. Its proof is rather tech-
nical, so if you need to learn it, go back to the text. The statement is the following. Let G be a
finite abelian p-group. If 〈a〉 is a maximal cyclic subgroup of G, then there exists a subgroup H
with G ∼= 〈a〉 ⊕H.

We finally come to the fundamental theorem of finite abelian groups.

Theorem 7.5.6 Any finite abelian group is isomorphic to a direct product of cyclic groups of prime
power order. Any two such decompositions have the same number of factors of each order.

Proposition 7.5.7 gives a different way to write the decomposition. If G is a finite abelian group,
then G is isomorphic to a direct product of cyclic groups

Zn1 × Zn2 × · · · × Znk

such that ni | ni−1 for i = 2, 3, . . . , k. The proof of Proposition 7.5.7 is best understood by looking
at an example. Suppose that |G| = 3456 = 2733. Also suppose that we have enough additional
information to write G in the following form.

G = Z8 × Z4 × Z4 × Z9 × Z3

As long as two subscripts are relatively prime, we can recombine them. Taking the largest pairs
first, we can rewrite G in the following form.

G ∼= (Z8 × Z9)× (Z4 × Z3)× Z4
∼= Z72 × Z12 × Z4

The factors are still cyclic, and now each subscript is a divisor of the previous one.

REVIEW PROBLEMS: SECTION 7.5

13. Find all abelian groups of order 108 (up to isomorphism).

14. Let G and H be finite abelian groups, and assume that G×G is isomorphic to H ×H. Prove
that G is isomorphic to H.

15. Let G be an abelian group which has 8 elements of order 3, 18 elements of order 9, and no other
elements besides the identity. Find (with proof) the decomposition of G as a direct product
of cyclic groups.
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16. Let G be a finite abelian group with |G| = 216. If |6G| = 6, determine G up to isomorphism.

17. Apply both structure theorems to give the two decompositions of the abelian group Z×216.

18. Let G and H be finite abelian groups, and assume that they have the following property. For
each positive integer m, G and H have the same number of elements of order m. Prove that
G and H are isomorphic.

7.6 Solvable groups

Summary: This section introduces the concept of a composition series for a finite group. The terms in
the composition series are simple groups, and the list of composition factors is completely determined
by G. A group is solvable iff the composition factors are abelian.

A polynomial equation is solvable by radicals iff its Galois group is solvable (see Section 8.4).
This provided the original motivation for studying the class of solvable groups.

In Definition 7.6.9, a chain of subgroups G = N0 ⊇ N1 ⊇ . . . ⊇ Nn such that
(i) Ni is a normal subgroup in Ni−1 for i = 1, 2, . . . , n,
(ii) Ni−1/Ni is simple for i = 1, 2, . . . , n, and
(iii) Nn = 〈1〉

is called a composition series for G. The factor groups Ni−1/Ni are called the composition factors
determined by the series, and n is called the length of the series.

For this idea of a composition series to be useful, there needs to be some uniqueness to the
composition factors. The composition series itself does not determine the group–you also need to
know how to put the factors together. For example, the same composition factors occur in S3 and
Z6, as shown by these composition series.

Z6 ⊃ 2Z6 ⊃ {0} S3 ⊃ A3 ⊃ 〈1〉

The composition factors are Z2 and Z3 in each case.

Theorem 7.6.10 (Jordan–Hölder) Any two composition series for a finite group have the same
length. Furthermore, there is a one-to-one correspondence between composition factors of the two
composition series under which corresponding composition factors are isomorphic.

In Definition 7.6.1, the group G is said to be solvable if there exists a finite chain of subgroups
G = N0 ⊇ N1 ⊇ . . . ⊇ Nn such that

(i) Ni is a normal subgroup in Ni−1 for i = 1, 2, . . . , n,
(ii) Ni−1/Ni is abelian for i = 1, 2, . . . , n, and
(iii) Nn = 〈1〉.

By Proposition 7.6.2, a finite group is solvable iff it has a composition series in which each composition
factor is abelian. Theorem 7.6.3 produces a large class of examples: any finite p-group is solvable (p
is prime).

An element g of the group G is called a commutator if g = aba−1b−1 for elements a, b ∈ G. The
smallest subgroup that contains all commutators of G is called the commutator subgroup or derived
subgroup of G, and is denoted by G′. Proposition 7.6.5 shows that G′ is normal in G, and that G/G′

is abelian. Furthermore, G′ is the smallest normal subgroup for which the factor group is abelian.
The higher derived subgroups G(k) are defined inductively, and give another way to characterize
solvable groups.

Theorem 7.6.7 states that a group G is solvable iff G(n) = 〈1〉 for some positive integer n. As
a corollary of the theorem, it is possible to show that if G is solvable, then so is any subgroup or
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homomorphic image of G. Furthermore, if N is a normal subgroup of G such that both N and G/N
are solvable, then G is solvable.

REVIEW PROBLEMS: SECTION 7.6

11. Let p be a prime and let G be a nonabelian group of order p3. Show that the center Z(G) of
G is equal to the commutator subgroup G′ of G.

12. Prove that the dihedral group Dn is solvable for all n.

13. Prove that any group of order 588 is solvable, given that any group of order 12 is solvable.

14. Let G be a group of order 780 = 22 · 3 · 5 · 13. Assume that G is not solvable. What are the
composition factors of G? (Assume that the only nonabelian simple group of order ≤ 60 is the
alternating group A5.)

7.7 Simple groups

Summary: This section deals with two classes of groups: the alternating groups An, and the projective
special linear groups PSL2(F ), which provide examples of simple groups. These can be used to classify
all simple groups of order ≤ 200.

Theorem 7.7.2 The symmetric group Sn is not solvable for n ≥ 5.

Theorem 7.7.4 The alternating group An is simple if n ≥ 5.

Let F be a field. The set of all n× n matrices with entries in F and determinant 1 is called the
special linear group over F , and is denoted by SLn(F ). For any field F , the center of SLn(F ) is the
set of nonzero scalar matrices with determinant 1. The group SLn(F ) modulo its center is called
the projective special linear group and is denoted by PSLn(F ).

Theorem 7.7.9 If F is a finite field with |F | > 3, then the projective special linear group PSL2(F )
is simple.

It may be useful to review some of the tools you can use to show that a finite group G is not
simple.

(1) It may be possible to use the Sylow theorems to show that some Sylow p-subgroup of G is
normal. Recall that if |G| = pkm, where p 6 | m, then the number of Sylow p-subgroups is congruent
to 1 modulo p and is a divisor of m. This approach works in Problem 15 below.

(2) If you can define a nontrivial homomorphism φ : G → G′ such that |G| is not a divisor of
|G′|, then φ cannot be one-to-one, and so ker(φ) is a proper nontrivial subgroup of G, which shows
that G is not simple. One way to do this is to define a group action of G on a set S, and then use
the corresponding homomorphism from G into Sym(S). This approach depends on finding an action
on a set S with n elements, for which |G| is not a divisor of n!. (See the proposition in Section 7.2.)

To use this method, you need to find an action of G on a comparatively small set. One way
to define a group action is to let G act by conjugation on the set of conjugates of a particular
Sylow p-subgroup. The number of conjugates of a Sylow p-subgroup H is equal to the index of
the normalizer N(H) in G, so if you prefer, you can let G act by multiplication on the left cosets
of N(H). In either case you need a Sylow p-subgroup with a number of conjugates that is small
compared to |G|. This approach works in Problem 18 below.
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(3) In some cases you can count the number of elements in the various Sylow p-subgroups and
show that for at least one of the primes factors of |G| there can be only 1 Sylow p-subgroup. The
solution to Problem 19 below combines this approach with the previous one.

You must be very careful in counting the elements that belong to a Sylow p-subgroup and its
conjugates. If |G| has m subgroups of order p, then these subgroups can only intersect in the identity
element, so you can count m · (p − 1) elements. But if G has Sylow p-subgroups of order p2, for
example, these may have nontrivial intersection.

For example, the dihedral group D6 has 3 Sylow 2-subgroups (each of order 4). Using our
standard notation, these are {1, a3, b, a3b}, {1, a3, ab, a4b}, and {1, a3, a2b, a5b}. The intersection of
these Sylow 2-subgroups is the center {1, a3}, and so having 3 Sylow 2-subgroups of order 4 only
accounts for a total of 7 elements. Note that the Sylow 3-subgroup is {1, a2, a4}, and the elements
a and a5, which have order 6, do not belong to any Sylow subgroup.

As a further example, we can now show that the smallest nonabelian simple group has order
60. The special cases of Burnside’s theorem given in Exercise 7.6.7 of the text take care of all cases
except 24 = 23 · 3, 30 = 2 · 3 · 5, 36 = 22 · 32, 40 = 24 · 5, 42 = 2 · 3 · 7, 48 = 24 · 3, and 56 = 23 · 7.
The cases 30, 36, 48, and 56 are covered by Example 7.4.2, and Exercises 7.4.13, 7.4.12, and 7.4.10
in the text, respectively. If |G| = 24, then n2(G) is 1 or 3, and if 3 we get an embedding into S3, a
contradiction. If |G| = 40, then n5(G) = 1. If |G| = 42, the Sylow 7-subgroup must be normal.

Exercise 7.7.1 in the text shows that there are no simple groups of order 2m, where m is odd.
Problem 16 below shows that if G is a simple group that contains a subgroup of index n, where
n > 2, then G can be embedded in the alternating group An. These results, together with the
techniques mentioned above, can be used to show that a simple group of order < 200 can only have
one of these possible orders: 60, 120, 144, 168, or 180. We know that there are simple groups of order
60 and 168. The arguments needed to eliminate 120, 144, and 180 are somewhat more complicated,
but aren’t really beyond the level of the text. If you want to tackle some more challenging problems,
try these last three cases.

REVIEW PROBLEMS: SECTION 7.7

1. Let G be a group of order 2m, where m is odd. Show that G is not simple.

15. Prove that there are no simple groups of order 200.

16. Sharpen Exercise 7.7.3 (b) of the text by showing that if G is a simple group that contains a
subgroup of index n, where n > 2, then G can be embedded in the alternating group An.

17. Prove that if G contains a nontrivial subgroup of index 3, then G is not simple.

18. Prove that there are no simple groups of order 96.

19. Prove that there are no simple groups of order 132.

20. Prove that there are no simple groups of order 160.

21. Prove that there are no simple groups of order 280.

22. Prove that there are no simple groups of order 1452.
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Chapter 8

GALOIS THEORY

The theory of solvability of polynomial equations developed by Galois began with the attempt
to find formulas for the solutions of polynomial equations of degree five. After the discovery of
the fundamental theorem of algebra, the question of proving the existence of solutions changed
to determining the form of the solutions. The question was whether or not the solutions could
be expressed in a reasonable way by extracting square roots, cube roots, etc., of combinations of
the coefficients of the polynomial. Galois saw that this involved a comparison of two fields, by
determining how the field generated by the coefficients sits inside the larger field generated by the
solutions of the equation.

8.0 Splitting fields

Summary: The first step in finding the Galois group of an polynomial over a field is to find the
smallest extension of the field that contains all of the roots of the polynomial.

Beginning with a field K, and a polynomial f(x) ∈ K, we need to construct the smallest possible
extension field F of K that contains all of the roots of f(x). This will be called a splitting field for
f(x) over K. The word “the” is justified by proving that any two splitting fields are isomorphic.
The first step in this section is to review a number of definitions and results from Chapter 6.

Let F be an extension field of K and let u ∈ F . If there exists a nonzero polynomial f(x) ∈ K[x]
such that f(u) = 0, then u is said to be algebraic over K. If not, then u is said to be transcendental
over K.

Proposition 6.1.2 If F is an extension field of K, and u ∈ F is algebraic over K, then there exists
a unique monic irreducible polynomial p(x) ∈ K[x] such that p(u) = 0. It is the monic polynomial
of minimal degree that has u as a root, and if f(x) is any polynomial in K[x] with f(u) = 0, then
p(x) | f(x).

Alternate proof: The proof in the text uses some elementary ring theory. I’ve decided to include a
proof that depends only on basic facts about polynomials.

Assume that u ∈ F is algebraic over K, and let I be the set of all polynomials f(x) ∈ K[x]
such that f(u) = 0. The division algorithm for polynomials can be used to show that if p(x) is a
nonzero monic polynomial in I of minimal degree, then p(x) is a generator for I, and thus p(x) | f(x)
whenever f(u) = 0.

Furthermore, p(x) must be an irreducible polynomial, since if p(x) = g(x)h(x) for g(x), h(x) ∈
K[x], then g(u)h(u) = p(u) = 0, and so either g(u) = 0 or h(u) = 0 since F is a field. From the
choice of p(x) as a polynomial of minimal degree that has u as a root, we see that either g(x) or
h(x) has the same degree as p(x), and so p(x) must be irreducible. 2

19
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In the above proof, the monic polynomial p(x) of minimal degree in K[x] such that p(u) = 0 is
called the minimal polynomial of u over K, and its degree is called the degree of u over K.

Let F be an extension field of K, and let u1, u2, . . ., un ∈ F . The smallest subfield of F that
contains K and u1, u2, . . . , un will be denoted by K(u1, u2, . . . , un). It is called the extension field
of K generated by u1, u2, . . . , un. If F = K(u) for a single element u ∈ F , then F is said to be a
simple extension of K.

Let F be an extension field of K, and let u ∈ F . Since K(u) is a field, it must contain all
elements of the form

a0 + a1u+ a2u
2 + . . .+ amu

m

b0 + b1u+ b2u2 + . . .+ bnun
,

where ai, bj ∈ K for i = 1, . . . ,m and j = 1, . . . , n. In fact, this set describes K(u), and if u is
transcendental over K, this description cannot be simplified. On the other hand, if u is algebraic
overK, then the denominator in the above expression is unnecessary, and the degree of the numerator
can be assumed to be less than the degree of the minimal polynomial of u over K.

If F is an extension field of K, then the multiplication of F defines a scalar multiplication,
considering the elements of K as scalars and the elements of F as vectors. This gives F the structure
of a vector space over K, and allows us to make use of the concept of the dimension of a vector
space. The next result describes the structure of the extension field obtained by adjoining an
algebraic element.

Proposition 6.1.5 Let F be an extension field of K and let u ∈ F be an element algebraic over K.
(a) K(u) ∼= K[x]/ 〈p(x)〉, where p(x) is the minimal polynomial of u over K.
(b) If the minimal polynomial of u over K has degree n, then K(u) is an n-dimensional vector

space over K.

Alternate proof: The standard proof uses the ring homomorphism θ : K[x]→ F defined by evaluation
at u. Then the image of θ is K(u), and the kernel is the ideal of K[x] generated by the minimal
polynomial p(x) of u over K. Since p(x) is irreducible, ker(θ) is a prime ideal, and so K[x]/ ker(θ)
is a field because every nonzero prime ideal of a principal ideal domain is maximal. Thus K(u) is a
field since K(u) ∼= K[x]/ ker(θ).

The usual proof involves some ring theory, but the actual ideas of the proof are much simpler.
To give an elementary proof, define φ : K[x]/ 〈p(x)〉 → K(u) by φ([f(x)]) = f(u), for all congruence
classes [f(x)] of polynomials (modulo p(x)). This mapping makes sense because K(u) contains u,
together with all of the elements of K, and so it must contain any expression of the form a0 + a1u+
. . . + amu

m, where ai ∈ K, for each subscript i. The function φ is well-defined, since it is also
independent of the choice of a representative of [f(x)]. In fact, if g(x) ∈ K[x] and f(x) is equivalent
to g(x), then f(x) − g(x) = q(x)p(x) for some q(x) ∈ K[x], and so f(u) − g(u) = q(u)p(u) = 0,
showing that φ([f(x)]) = φ([g(x)]).

Since the function φ simply substitutes u into the polynomial f(x), and it is not difficult to show
that it preserves addition and multiplication. It follows from the definition of p(x) that φ is one-to-
one. Suppose that f(x) represents a nonzero congruence class in K[x]/ 〈p(x)〉. Then p(x) 6 | f(x),
and so f(x) is relatively prime to p(x) since it is irreducible. Therefore there exist polynomials
a(x) and b(x) in K[x] such that a(x)f(x) + b(x)p(x) = 1. It follows that [a(x)][f(x)] = [1] for the
corresponding equivalence classes, and this shows that K[x]/ 〈p(x)〉 is a field. Thus the image E of
φ in F must be subfield of F . On the one hand, E contains u and K, and on the other hand, we
have already shown that E must contain any expression of the form a0 + a1u+ . . .+ amu

m, where
ai ∈ K. It follows that E = K(u), and we have the desired isomorphism.

(b) It follows from the description of K(u) in part (a) that if p(x) has degree n, then the set
B = {1, u, u2, . . . , un−1} is a basis for K(u) over K. 2

Let F be an extension field of K. The dimension of F as a vector space over K is called the
degree of F over K, denoted by [F : K]. If the dimension of F over K is finite, then F is said to be
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a finite extension of K. Let F be an extension field of K and let u ∈ F . The following conditions
are equivalent: (1) u is algebraic over K; (2) K(u) is a finite extension of K; (3) u belongs to a finite
extension of K.

Never underestimate the power of counting: the next result is crucial. If we have a tower of
extensions K ⊆ E ⊆ F , where E is finite over K and F is finite over E, then F is finite over K, and
[F : K] = [F : E][E : K]. This has a useful corollary, which states that the degree of any element of
F is a divisor of [F : K].

Let K be a field and let f(x) = a0 + a1x + . . . + anx
n be a polynomial in K[x] of degree

n > 0. An extension field F of K is called a splitting field for f(x) over K if there exist elements
r1, r2, . . . , rn ∈ F such that

(i) f(x) = an(x− r1)(x− r2) · · · (x− rn) and
(ii) F = K(r1, r2, . . . , rn).

In this situation we usually say that f(x) splits over the field F . The elements r1, r2, . . . , rn are roots
of f(x), and so F is obtained by adjoining to K a complete set of roots of f(x). An induction argu-
ment (on the degree of f(x)) can be given to show that splitting fields always exist. Theorem 6.4.2
states that if f(x) ∈ K[x] is a polynomial of degree n > 0, then there exists a splitting field F for
f(x) over K, with [F : K] ≤ n!.

The uniqueness of splitting fields follows from two lemmas. Let φ : K → L be an isomorphism
of fields. Let F be an extension field of K such that F = K(u) for an algebraic element u ∈ F . Let
p(x) be the minimal polynomial of u over K. If v is any root of the image q(x) of p(x) under φ, and
E = L(v), then there is a unique way to extend φ to an isomorphism θ : F → E such that θ(u) = v
and θ(a) = φ(a) for all a ∈ K. The required isomorphism θ : K(u)→ L(v) must have the form

θ(a0 + a1u+ . . .+ an−1u
n−1) = φ(a0) + φ(a1)v + . . .+ φ(an−1)vn−1 .

The second lemma is stated as follows. Let F be a splitting field for the polynomial f(x) ∈ K[x]. If
φ : K → L is a field isomorphism that maps f(x) to g(x) ∈ L[x] and E is a splitting field for g(x)
over L, then there exists an isomorphism θ : F → E such that θ(a) = φ(a) for all a ∈ K. The proof
uses induction on the degree of f(x), together with the previous lemma.

Theorem 6.4.5 states that the splitting field over the field K of a polynomial f(x) ∈ K[x] is
unique up to isomorphism. Among other things, this result has important consequences for finite
fields.

REVIEW PROBLEMS: SECTION 8.0

1. Find the splitting field over Q for the polynomial x4 + 4.

2. Let p be a prime number. Find the splitting fields for xp − 1 over Q and over R.

3. Find the splitting field for x3 + x+ 1 over Z2.

4. Find the degree of the splitting field over Z2 for the polynomial (x3 + x+ 1)(x2 + x+ 1).

5. Let F be an extension field of K. Show that the set of all elements of F that are algebraic
over K is a subfield of F .

6. Let F be a field generated over the field K by u and v of relatively prime degrees m and n,
respectively, over K. Prove that [F : K] = mn.

7. Let F ⊇ E ⊇ K be extension fields. Show that if F is algebraic over E and E is algebraic over
K, then F is algebraic over K.

8. Let F ⊃ K be an extension field, with u ∈ F . Show that if [K(u) : K] is an odd number, then
K(u2) = K(u).
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9. Find the degree [F : Q], where F is the splitting field of the polynomial x3 − 11 over the field
Q of rational numbers.

10. Determine the splitting field over Q for x4 + 2.

11. Determine the splitting field over Q for x4 + x2 + 1.

12. Factor x6 − 1 over Z7; factor x5 − 1 over Z11.

8.1 Galois groups

Summary: This section gives the definition of the Galois group and some results that follow imme-
diately from the definition. We can give the full story for Galois groups of finite fields.

We use the notation Aut(F ) for the group of all automorphisms of F , that is, all one-to-one
functions from F onto F that preserve addition and multiplication. The smallest subfield containing
the identity element 1 is called the prime subfield of F . If F has characteristic zero, then its prime
subfield is isomorphic to Q, and if F has characteristic p, for some prime number p, then its prime
subfield is isomorphic to Zp. In either case, for any automorphism φ of F we must have φ(x) = x
for all elements in the prime subfield of F .

To study solvability by radicals of a polynomial equation f(x) = 0, we let K be the field gen-
erated by the coefficients of f(x), and let F be a splitting field for f(x) over K. Galois considered
permutations of the roots that leave the coefficient field fixed. The modern approach is to consider
the automorphisms determined by these permutations. The first result is that if F is an extension
field of K, then the set of all automorphisms φ : F → F such that φ(a) = a for all a ∈ K is a group
under composition of functions. This justifies the following definitions.

Definition 8.1.2 Let F be an extension field of K. The set

{θ ∈ Aut(F ) | θ(a) = a for all a ∈ K}

is called the Galois group of F over K, denoted by Gal(F/K).

Definition 8.1.3 Let K be a field, let f(x) ∈ K[x], and let F be a splitting field for f(x) over
K. Then Gal(F/K) is called the Galois group of f(x) over K, or the Galois group of the equation
f(x) = 0 over K.

Proposition 8.1.4 states that if F is an extension field of K, and f(x) ∈ K[x], then any element
of Gal(F/K) defines a permutation of the roots of f(x) that lie in F . The next theorem is extremely
important.

Theorem 8.1.6 Let K be a field, let f(x) ∈ K[x] have positive degree, and let F be a splitting field
for f(x) over K. If no irreducible factor of f(x) has repeated roots, then |Gal(F/K)| = [F : K].

This result can be used to compute the Galois group of any finite extension of any finite field,
but first we need to review the structure of finite fields. If F is a finite field of characteristic p, then
it is a vector space over its prime subfield Zp, and so it has pn elements, where [F : Zp] = n. The
structure of F is determined by the following theorem.

Theorem 6.5.2 If F is a finite field with pn elements, then F is the splitting field of the polynomial
xp

n − x over the prime subfield of F .
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The description of the splitting field of xp
n − x over Zp shows that for each prime p and each

positive integer n, there exists a field with pn elements. The uniqueness of splitting fields shows
that two finite fields are isomorphic iff they have the same number of elements. The field with pn

elements is called the Galois field of order pn, denoted by GF (pn). Every finite field is a simple
extension of its prime subfield, since the multiplicative group of nonzero elements is cyclic, and this
implies that for each positive integer n there exists an irreducible polynomial of degree n in Zp[x].

If F is a field of characteristic p, and n ∈ Z+, then {a ∈ F | apn = a} is a subfield of F , and this
observation actually produces all subfields. In fact, Proposition 6.5.5 has the following statement:
Let F be a field with pn elements. Each subfield of F has pm elements for some divisor m of n.
Conversely, for each positive divisor m of n there exists a unique subfield of F with pm elements.

If F is a field of characteristic p, consider the function φ : F → F defined by φ(x) = xp. Since
F has characteristic p, we have φ(a + b) = (a + b)p = ap + bp = φ(a) + φ(b), because in the
binomial expansion of (a + b)p each coefficient except those of ap and bp is zero. (The coefficient
(p!)/(k!(p − k)!) contains p in the numerator but not the denominator since p is prime, and so it
must be equal to zero in a field of characteristic p.) It is clear that φ preserves products, and so φ is
a ring homomorphism. Furthermore, since it is not the zero mapping, it must be one-to-one. If F
is finite, then φ must also be onto, and so in this case φ is called the Frobenius automorphism of F .

Note that φn(x) = xp
n

. (Inductively, φn(x) = (φn−1(x))p = (xp
n−1

)p = xp
n

.) Using an appro-
priate power of the Frobenius automorphism, we can prove that the Galois group of any finite field
must be cyclic.

Theorem 8.1.8 Let K be a finite field and let F be an extension of K with [F : K] = m. Then
Gal(F/K) is a cyclic group of order m.

Outline of the proof: We start with the observation that F has pn elements, for some positive integer
n. Then K has pr elements, for r = n/m, and F is the splitting field of xp

n−x over its prime subfield,
and hence over K. Since f(x) has no repeated roots, we may apply Theorem 8.1.6 to conclude that
|Gal(F/K)| = m. Now define θ : F → F to be the rth power of the Frobenius automorphism. That
is, define θ(x) = xp

r

. To compute the order of θ in Gal(F/K), first note that θm is the identity
since θm(x) = xp

rm

= xp
n

= x for all x ∈ F . But θ cannot have lower degree, since this would give
a polynomial with too many roots. It follows that θ is a generator for Gal(F/K).

REVIEW PROBLEMS: SECTION 8.1

7. Determine the group of all automorphisms of a field with 4 elements.

8. Let F be the splitting field in C of x4 + 1.

(a) Show that [F : Q] = 4.

(b) Find automorphisms of F that have fixed fields Q(
√

2), Q(i), and Q(
√

2i), respectively.

9. Find the Galois group over Q of the polynomial x4 + 4.

10. Find the Galois groups of x3 − 2 over the fields Z5 and Z11.

11. Find the Galois group of x4 − 1 over the field Z7.

12. Find the Galois group of x3 − 2 over the field Z7.
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8.2 Repeated roots

Summary: In computing the Galois group of a polynomial, it is important to know whether or not it
has repeated roots. A field F is called perfect if no irreducible polynomial over F has repeated roots.
This section includes the results that any field of characteristic zero is perfect, and that any finite
field is perfect.

In the previous section, we showed that the order of the Galois group of a polynomial with no
repeated roots is equal to the degree of its splitting field over the base field. The first thing in this
section is to develop methods to determine whether or not a polynomial has repeated roots.

Let f(x) be a polynomial in K[x], and let F be a splitting field for f(x) over K. If f(x) has the
factorization f(x) = (x − r1)m1 · · · (x − rt)mt over F , then we say that the root ri has multiplicity
mi. If mi = 1, then ri is called a simple root.

Let f(x) ∈ K[x], with f(x) =
∑t
k=0 akx

k. The formal derivative f ′(x) of f(x) is defined by the
formula f ′(x) =

∑t
k=0 kakx

k−1 , where kak denotes the sum of ak added to itself k times. It is not dif-
ficult to show from this definition that the standard differentiation formulas hold. Proposition 8.2.3
shows that the polynomial f(x) ∈ K[x] has no multiple roots iff it is relatively prime to its formal
derivative f ′(x). Proposition 8.2.4 shows that f(x) has no multiple roots unless char(K) = p 6= 0
and f(x) has the form f(x) = a0 + a1x

p + a2x
2p + . . .+ anx

np.
A polynomial f(x) over the field K is called separable if its irreducible factors have only simple

roots. An algebraic extension field F of K is called separable over K if the minimal polynomial of
each element of F is separable. The field F is called perfect if every polynomial over F is separable.

Theorem 8.2.6 states that any field of characteristic zero is perfect, and a field of characteristic
p > 0 is perfect if and only if each of its elements has a pth root in the field. It follows immediately
from the theorem that any finite field is perfect (just look at the Frobenius automorphism).

To give an example of a field that is not perfect, let p be a prime number, and let K = Zp. Then
in the field K(x) of rational functions over K, the element x has no pth root (see Exercise 8.2.8 in
the text). Therefore this rational function field is not perfect.

The extension field F of K is called a simple extension if there exists an element u ∈ F such
that F = K(u). In this case, u is called a primitive element. Note that if F is a finite field, then
Theorem 6.5.10 shows that the multiplicative group F× is cyclic. If the generator of this group is
a, then it is easy to see that F = K(a) for any subfield K. Theorem 8.2.8 shows that any finite
separable extension is a simple extension.

REVIEW PROBLEMS: SECTION 8.2

8. Let f(x) ∈ Q[x] be irreducible over Q, and let F be the splitting field for f(x) over Q. If
[F : Q] is odd, prove that all of the roots of f(x) are real.

9. Find an element α with Q(
√

2, i) = Q(α).

10. Find the Galois group of x6 − 1 over Z7.

8.3 The fundamental theorem

Summary: In this section we study the connection between subgroups of Gal(F/K) and fields between
K and F . This is a critical step in proving that a polynomial is solvable by radicals if and only if
its Galois group is solvable.



8.3. THE FUNDAMENTAL THEOREM 25

Let F be a field, and let G be a subgroup of Aut(F ). Then

{a ∈ F | θ(a) = a for all θ ∈ G}

is called the G-fixed subfield of F , or the G-invariant subfield of F , and is denoted by FG. (Propo-
sition 8.3.1 shows that FG is actually a subfield of F .) If F is the splitting field over K of a
separable polynomial and G = Gal(F/K), then Proposition 8.3.3 shows that FG = K. Artin’s
lemma (Lemma 8.3.4) provides the first really significant result of the section. It states that if G is
a finite group of automorphisms of the field F , and K = FG, then [F : K] ≤ |G|.

Let F be an algebraic extension of the field K. Then F is said to be a normal extension of K if
every irreducible polynomial in K[x] that contains a root in F is a product of linear factors in F [x].
With this definition, the following theorem and its corollary can be proved from previous results.
Some authors say that F is a Galois extension of K if the equivalent conditions of Theorem 8.2.6
are satisfied.

Theorem 8.3.6 The following are equivalent for an extension field F of K:
(1) F is the splitting field over K of a separable polynomial;
(2) K = FG for some finite group G of automorphisms of F ;
(3) F is a finite, normal, separable extension of K.

As a corollary, we obtain the fact that if F is an extension field of K such that K = FG for some
finite group G of automorphisms of F , then G = Gal(F/K).

The next theorem is the centerpiece of Galois theory. In the context of the fundamental theorem,
we say that two intermediate subfields E1 and E2 are conjugate if there exists φ ∈ Gal(F/K) such
that φ(E1) = E2. Proposition 8.3.9 states that if F is the splitting field of a separable polynomial
over K, and K ⊆ E ⊆ F , with H = Gal(F/E), then Gal(F/φ(E)) = φHφ−1, for any φ ∈ Gal(F/K).

Theorem 8.3.8. (The fundamental theorem of Galois theory) Let F be the splitting field
of a separable polynomial over the field K, and let G = Gal(F/K).

(a) There is a one-to-one order-reversing correspondence between subgroups of G and subfields
of F that contain K:

(i) The subfield FH corresponds to the subgroup H, and H = Gal(F/FH).
(ii) If K ⊆ E ⊆ F , then the corresponding subgroup is Gal(F/E), and E = FGal(F/E).

(b) [F : FH ] = |H| and [FH : K] = [G : H], for any subgroup H of G.
(c) Under the above correspondence, the subgroup H is normal iff FH is a normal extension of

K. In this case, Gal(E/K) ∼= Gal(F/K) / Gal(F/E).
For example, suppose that F is a finite field of characteristic p, and has pm elements. Then

[F : GF(p)] = m, and so G = Gal(F/GF(p)) is a cyclic group of degree m by Corollary 8.1.7.
Since G is cyclic, the subgroups of G are in one-to-one correspondence with the positive divisors of
m. Proposition 6.5.5 shows that the subfields of F are also in one-to-one correspondence with the
positive divisors of m. Remember that the smaller the subfield, the more automorphisms will leave
it invariant. By the Fundamental Theorem of Galois Theory, a subfield E with [E : GF(p)] = k
corresponds to the cyclic subgroup with index k, not to the cyclic subgroup of order k.

REVIEW PROBLEMS: SECTION 8.3

6. Prove that if F is a field and K = FG for a finite group G of automorphisms of F , then there
are only finitely many subfields between F and K.

7. Let F be the splitting field over K of a separable polynomial. Prove that if Gal(F/K) is cyclic,
then for each divisor d of [F : K] there is exactly one field E with K ⊆ E ⊆ F and [E : K] = d.



26 CHAPTER 8. GALOIS THEORY

8. Let F be a finite, normal extension of Q for which |Gal(F/Q)| = 8 and each element of
Gal(F/Q) has order 2. Find the number of subfields of F that have degree 4 over Q.

9. Let F be a finite, normal, separable extension of the field K. Suppose that the Galois group
Gal(F/K) is isomorphic to D7. Find the number of distinct subfields between F and K. How
many of these are normal extensions of K?

10. Show that F = Q(i,
√

2) is normal over Q; find its Galois group over Q, and find all interme-
diate fields between Q and F .

11. Let F = Q(
√

2, 3
√

2). Find [F : Q] and prove that F is not normal over Q.

12. Find the order of the Galois group of x5 − 2 over Q.

8.4 Solvability by radicals

Summary: We must first determine the structure of the Galois group of a polynomial of the form
xn − a. Then we will make use of the fundamental theorem of Galois theory to see what happens
when we successively adjoin roots of such polynomials.

An extension field F of K is called a radical extension of K if there exist elements u1, u2, . . . , um in
F such that (i) F = K(u1, u2, . . . , um), and (ii) un1

1 ∈ K and unii ∈ K(u1, . . . , ui−1) for i = 2, . . . ,m
and n1, n2, . . . , nm ∈ Z. For f(x) ∈ K[x], the polynomial equation f(x) = 0 is said to be solvable
by radicals if there exists a radical extension F of K that contains all roots of f(x).

Proposition 8.4.2 gives the first major result. If F is the splitting field of xn − 1 over a field K
of characteristic zero, then Gal(F/K) is an abelian group.

The roots of the polynomial xn− 1 are called the nth roots of unity. Any generator of the group
of all nth roots of unity is called a primitive nth root of unity. At this point we look ahead to one
of the results from Section 8.5.

The complex roots of the polynomial xn−1 are the nth roots of unity. If we let α be the complex
number α = cos θ + i sin θ, where θ = 2π/n, then 1, α, α2, . . ., αn−1 are each roots of xn − 1, and
since they are distinct they must constitute the set of all nth roots of unity. Thus we have

xn − 1 =
∏n−1
k=0(x− αk) .

The set of nth roots of unity is a cyclic subgroup of C× of order n. Thus there are ϕ(n) primitive
nth roots of unity, the generators of the group. If d|n, then any element of order d generates a
subgroup of order d, which has ϕ(d) generators. Thus there are precisely ϕ(d) complex numbers of
order d, all living in the group of nth roots of unity.

If p is prime, then every nontrivial pth root of unity is primitive, and is a root of the irreducible
polynomial xp−1 +xp−2 + . . .+x+ 1, which is a factor of xp− 1. The situation is more complicated
when n is not prime. The nth cyclotomic polynomial.

Φn(x) =
∏

(k,n)=1, 1≤k<n(x− αk)

where n is a positive integer, and α = cos θ + i sin θ, with θ = 2π/n. (See Definition 8.5.1.)
The following conditions hold for Φn(x): (a) deg(Φn(x)) = ϕ(n); (b) xn − 1 =

∏
d|n Φd(x); (c)

Φn(x) is monic, with integer coefficients; and (d) Φn(x) is irreducible over Q. (See Proposition 8.5.2
and Theorem 8.5.3.) Condition (b) shows how to compute Φn(x) inductively.

The Galois group of the nth cyclotomic polynomial is computed in Theorem 8.5.4. This theorem
states that for every positive integer n, the Galois group of the nth cyclotomic polynomial Φn(x)
over Q is isomorphic to Z×n . Theorem 8.4.3 shows more generally that if K is a field of characteristic
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zero that contains all nth roots of unity, a ∈ K, and F is the splitting field of xn − a over K, then
Gal(F/K) is a cyclic group whose order is a divisor of n.

We have finally reached our goal, stated in the following two theorems.

Theorem 8.4.6. Let f(x) be a polynomial over a field K of characteristic zero. The equation
f(x) = 0 is solvable by radicals if and only if the Galois group of f(x) over K is solvable.

Theorem 8.4.8. There exists a polynomial of degree 5 with rational coefficients that is not solvable
by radicals.

Theorem 7.7.2 shows that Sn is not solvable for n ≥ 5, and so to give an example of a polynomial
equation of degree n that is not solvable by radicals, we only need to find a polynomial of degree n
whose Galois group over Q is Sn. As a special case of a more general construction, it can be shown
that f(x) = (x2 + 2)(x + 2)(x)(x − 2) − 2 = x5 − 2x3 − 8x − 2 has Galois group S5 because it has
precisely three real roots. This requires the following group theoretic lemma: Any subgroup of S5

that contains both a transposition and a cycle of length 5 must be equal to S5 itself.

REVIEW PROBLEMS: SECTION 8.4

7. Let f(x) be irreducible over Q, and let F be its splitting field over Q. Show that if Gal(F/Q)
is abelian, then F = Q(u) for all roots u of f(x).

8. Find the Galois group of x9 − 1 over Q.

9. Show that x4 − x3 + x2 − x + 1 is irreducible over Q, and use it to find the Galois group of
x10 − 1 over Q.

10. Show that p(x) = x5 − 4x + 2 is irreducible over Q, and find the number of real roots. Find
the Galois group of p(x) over Q, and explain why the group is not solvable.
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Chapter 7

Group Theory Solutions

SOLUTIONS: §7.0 Examples

1. Prove that if G is a group of order n, and F is any field, then GLn(F ) contains a subgroup
isomorphic to G.

Solution: Given a permutation σ ∈ Sn, we can consider σ to be a permutation of the standard
basis for the n-dimensional vector space Fn. As such, it determines a matrix, which can also
be described by letting σ permute the columns of the identity matrix. In short, the set of
“permutation” matrices in GLn(F ) is a subgroup isomorphic to Sn. Cayley’s theorem shows
that G is isomorphic to a subgroup of Sn, and therefore G is isomorphic to a subgroup of
GLn(F ).

2. What is the largest order of an element in Z×200?

Solution: Recall that Z×n is the multiplicative group of elements relatively prime to n, and its
order is given by the Euler ϕ-function. Since Z200

∼= Z4 ×Z25, we have Z×200
∼= Z×4 ×Z×25, and

Z×4 ∼= Z2.

Since |Z×25| = 52 − 5 = 20, by the fundamental structure theorem for finite abelian groups
(Theorem 7.5.6) we either have Z×200

∼= Z2×Z4×Z5 or Z×200
∼= Z2×Z2×Z2×Z5. In the first

case, the largest possible order is 20, and in the second case it is 10. In either case, the answer
depends on the largest order of an element in Z×25. The first guess might be to check the order
of the element 2. We have 25 = 32 ≡ 7, so 210 ≡ 49 ≡ −1 (mod 25), and thus 2 has order 20.

Alternate solution: A proof can also be given using Corollary 7.5.13, which states that Z×n is
cyclic if n is a power of an odd prime. Thus Z×200

∼= Z×4 × Z×25
∼= Z2 × Z20.

3. Let G be a finite group, and suppose that for any two subgroups H and K either H ⊆ K or
K ⊆ H. Prove that G is cyclic of prime power order.

Solution: Since G is finite, it has an element of maximal order, say a. Then 〈a〉 cannot be
properly contained in any other cyclic subgroup, so it follows that 〈b〉 ⊆ 〈a〉 for every b ∈ G,
and thus every element of G is a power of a. This shows that G is cyclic, say G = 〈a〉. Now
suppose that |G| has two distinct prime divisors p and q. Then there will be corresponding
subgroups of G of order p and q, and neither can be contained in the other, contradicting the
hypothesis.

4. Let G = S4 and N = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Prove that N is normal, and
that G/N ∼= S3.

Solution: The set {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} forms a conjugacy class of S4, which
shows that N is normal. The subgroup H of S4 generated by (1, 2, 3) and (1, 2) is isomorphic

29
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to S3, and does not contain any elements of H. The inclusion ι : H → G followed by the
projection π : G → G/N has trivial kernel since H ∩N = 〈1〉. Thus |πι(H)| = 6, so we must
have πι(H) = G/N , and thus G/N ∼= H ∼= S3.

5. Problem 4 can be used to construct a composition series S4 ⊃ N1 ⊃ N2 ⊃ N3 ⊃ 〈1〉 in which
N1 = A4 and N2

∼= Z2 × Z2. Show that there is no composition series in which N2
∼= Z4.

Solution: Any subgroup H of S4 that is isomorphic to Z4 must be generated by a 4-cycle
(a, b, c, d). By Exercise 2.3.13 (b) there exists σ ∈ S4 with σ(1, 2, 3, 4)σ−1 = (a, b, c, d). That
is, there exists an inner automorphism of S4 that maps (1, 2, 3, 4) to (a, b, c, d). Since any
isomorphism will map one composition series to another, this shows that to answer the question
it suffices to show that the second term in the composition series cannot be 〈(1, 2, 3, 4)〉.

Suppose that we have a composition series S4 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ 〈1〉 in which K2 =
〈(1, 2, 3, 4)〉. Then K2 is a normal subgroup of K1, so this means we should compute the
normalizer N(K2). We know that K2 is normal in the subgroup D generated by (1, 2, 3, 4)
and (2, 4), since D ∼= D4 (see Table 3.6.1). We could also show that K2 is a normal subgroup
of D by observing that fact K2 has index 2 in D.

Now K2 ⊂ D ⊆ N(K2) ⊆ S4, and since D has index 3 in S4, it follows that either D = N(K2)
or N(K2) = S4. Because (1, 2)(1, 2, 3, 4)(1, 2) = (1, 3, 4, 2) /∈ K2, it follows that K2 is not a
normal subgroup of S4, and so D = N(K2). This forces K1 = D in our supposed composition
series, which is impossible since D is not a normal subgroup of S4. (In the above calculation,
(1, 2)(1, 2, 3, 4)(1, 2) = (1, 3, 4, 2) /∈ D.)

6. Find the center of the alternating group An.

Solution: In the case n = 3, we have Z(A3) = A3 since A3 is abelian. If n ≥ 4, then
Z(An) = {(1)}. One way to see this is to use conjugacy classes, since showing that the center
is trivial is equivalent to showing that the identity is the only element whose conjugacy class
consists of exactly one element. The comments in this section of the review material show
that a conjugacy class of An is either a conjugacy class of Sn or half of a conjugacy class of
Sn. Since a conjugacy class of Sn consists of all permutations with a given cycle structure, if
n ≥ 4 every conjugacy class contains more than 2 elements (except for the conjugacy class of
the identity).

Alternate proof: We can also use the deeper theorem that if n ≥ 5, then An is simple and
nonabelian. Since the center is always a normal subgroup, this forces the center to be trivial
for n ≥ 5. That still leaves the case n = 4. A direct computation shows that (a, b, c) does not
commute with (a, b, d) or (a, b)(c, d). Since every nontrivial element of A4 has one of these two
forms, this implies that the center of A4 is trivial.

7. In a group G, any element of the form xyx−1y−1, with x, y ∈ G, is called a commutator of G.

(a) Find all commutators in the dihedral group Dn. Using the standard description of Dn via
generators and relations, consider the cases x = ai or x = aib and y = aj or y = ajb.

Solution: Case 1: If x = ai and y = aj , the commutator is trivial.

Case 2: If x = ai and y = ajb, then xyx−1y−1 = aiajba−iajb = aiajaibajb = aiajaia−jb2 =
a2i, and thus each even power of a is a commutator.

Case 3: If x = ajb and y = ai, we get the inverse of the element in Case 2.

Case 4: If x = aib and y = ajb, then xyx−1y−1 = aibajbaibajb, and so we get xyx−1y−1 =
aia−jb2aia−jb2 = a2(i−j), and again we get even powers of a.

If n is odd, then the commutators form the subgroup 〈a〉. If n is even, then the commutators
form the subgroup

〈
a2
〉
.
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(b) Show that the commutators of Dn form a normal subgroup N of Dn, and that Dn/N is
abelian.

Solution: If x = a2i, then conjugation by y = ajb yields yxy−1 = ajba2iajb = aja−2ib2a−j =
a−2i = x−1, which is again in the subgroup. It follows that the commutators form a normal
subgroup. The corresponding factor group has order 2 or 4, so it must be abelian.

8. Prove that SL2(Z2) ∼= S3.

Solution: Every invertible matrix over Z2 has determinant 1, so SL2(Z2) coincides with
GL2(Z2). Example 3.4.5 shows that GL2(Z2) ∼= S3.

The problem can also be solved by quoting the result that any nonabelian group of order 6 is
isomorphic to S3.

9. Find |PSL3(Z2)| and |PSL3(Z3)|.
Solution: The number of linearly independent vectors in Z3

2 is (23 − 1)(23 − 2)(23 − 4) =
7 · 6 · 4 = 23 · 3 · 7 = 168. The corresponding matrices over Z2 all have determinant 1, and the
identity matrix is the only scalar matrix. Thus |PSL3(Z2)| = 168.

Similarly, we have |GL3(Z3)| = (33−1)(33−3)(33−32). Half of these matrices have determinant
1 and half have determinant −1. Finally, the center of SL3(Z3) is trivial, since the only scalar
matrix with determinant 1 is the identity matrix. Thus |PSL3(Z3)| = 1

2 ·26·24·18 = 24 ·33 ·13 =
5616.

Note: These are the orders of the nonabelian finite simple groups of order less than 10,000:
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828.

10. For a commutative ring R with identity, define GL2(R) to be the set of invertible 2×2 matrices
with entries in R. Prove that GL2(R) is a group.

Solution: The fact that R is a ring, with addition and multiplication, allows us to define
matrix multiplication. The associative and distributive laws in R can be used to show that
multiplication is associative (the question only asks for the 2×2 case). Since R has an identity,
the identity matrix serves as the identity element. Finally, if A ∈ GL2(R), then A−1 exists,
and A−1 ∈ GL2(R) since (A−1)−1 = A.

11. Let G be the subgroup of GL2(Z4) defined by the set
{[

m b
0 1

]}
such that b ∈ Z4 and

m = ±1. Show that G is isomorphic to a known group of order 8.

Hint: The answer is either D4 or the quaternion group (see Example 3.3.7).

Solution: Let a =
[

1 1
0 1

]
and b =

[
−1 0

0 1

]
. Then it is easy to check that a has order

4 and b has order 2. Since aba =
[

1 1
0 1

] [
−1 0

0 1

] [
1 1
0 1

]
=
[
−1 −1

0 1

] [
1 1
0 1

]
=[

−1 0
0 1

]
= b, we have the identity ba = a−1b. Finally, each element has the form aib, so

the group is isomorphic to D4.

12. Let G be the subgroup of GL3(Z2) defined by the set


 1 0 0
a 1 0
b c 1

 such that a, b, c ∈ Z2.

Show that G is isomorphic to a known group of order 8.

Solution: A short computation shows the following. 1 0 0
1 1 0
0 1 1

4

=

 1 0 0
0 1 0
1 0 1

2

=

 1 0 0
0 1 0
0 0 1

 and

 1 0 0
0 1 0
0 1 1

2

=

 1 0 0
0 1 0
0 0 1





32 CHAPTER 7. GROUP THEORY SOLUTIONS

As the following computation shows, we have an element of order 4 and an element of order 2
that satisfy the relations of D4 (just as in the solution of the previous problem). 1 0 0

1 1 0
0 1 1

 1 0 0
0 1 0
0 1 1

 1 0 0
1 1 0
0 1 1

=

 1 0 0
1 1 0
0 0 1

 1 0 0
1 1 0
0 1 1

=

 1 0 0
0 1 0
0 1 1



SOLUTIONS: §7.1 Isomorphism theorems

16. Let G1 and G2 be groups of order 24 and 30, respectively. Let G3 be a nonabelian group that
is a homomorphic image of both G1 and G2. Describe G3, up to isomorphism.

Solution: The order of G3 must be a common divisor of 24 and 30, so it is a divisor of 6. Since
any group of order less than 6 is abelian, G3 must be isomorphic to the symmetric group S3.

17. Prove that a finite group whose only automorphism is the identity map must have order at
most two.

Solution: All inner automorphisms are trivial, so G is abelian. Then α(x) = x−1 is an
automorphism, so it is trivial, forcing x = x−1 for all x ∈ G. If G is written additively, then
G has a vector space structure over the field Z2. (Since every element of G has order 2, it
works to define 0 · x = 0 and 1 · x = x, for all x ∈ G.) With this vector space structure,
any group homomorphism is a linear transformation (and vice versa), so the automorphism
group of G is a group of invertible matrices. Therefore Aut(G) is nontrivial, unless G is zero
or one-dimensional.

18. Let H be a nontrivial subgroup of Sn. Show that either H ⊆ An, or exactly half of the
permutations in H are odd.

Solution: Look at the composition of the inclusion from H to Sn followed by the projection
of Sn onto Sn/An. Since Sn/An has only 2 elements, this composition either maps H to the
identity, in which case H ⊆ An, or else it maps onto Sn/An, in which case the kernel H ∩An
has index 2 in H.

19. Let p be a prime number, and let A be a finite abelian group in which every element has order
p. Show that Aut(A) is isomorphic to a group of matrices over Zp.

Solution: The first step in seeing this is to recognize that if every element of A has order p, then
the usual multiplication na, for integers n ∈ Z, actually define a scalar multiplication on A, for
scalars in Zp. Thus A is a vector space over Zp, and as such it has some dimension, say n. Note
that scalar multiplication by an element of Zp is really defined in terms of repeated addition.
Therefore every automorphism of A is a linear transformation, so Aut(A) is isomorphic to the
general linear group GLn(Zp).

20. Let G be a group and let N be a normal subgroup of G of finite index. Suppose that H is a
finite subgroup of G and that the order of H is relatively prime to the index of N in G. Prove
that H is contained in N .

Solution: Let π : G → G/N be the natural projection. Then π(H) is a subgroup of G/N ,
so its order must be a divisor of |G/N |. On the other hand, |π(H)| must be a divisor of |H|.
Since gcd(|H|, [G : N ]) = 1, we must have |π(H)| = 1, which implies that H ⊆ ker(π) = N .

21. Let G be a finite group and let K be a normal subgroup of G such that gcd(|K|, [G : K]) = 1.
Prove that K is a characteristic subgroup of G.

Note: Recall the definition given in Exercise 7.6.8 of the text. The subgroup K is a charac-
teristic subgroup of G if φ(K) ⊆ K for all φ ∈ Aut(G). In this case we say that K is invariant
under all automorphisms of G.
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Solution: Let φ be any automorphism of G. Then φ(K) is a subgroup of G, with |K| elements.
Since gcd(|K|, [G : K]) = 1, we can apply the result in the previous problem, which implies
that φ(K) ⊆ K.

22. Let N be a normal subgroup of a group G. Suppose that |N | = 5 and |G| is odd. Prove that
N is contained in the center of G.

Solution: Since |N | = 5, the subgroup N is cyclic, say N = 〈a〉. It suffices to show that
a ∈ Z(G), which is equivalent to showing that a has no conjugates other than itself. We first
note that since N is normal in G, any conjugate of a must be in N . We next note that if x is
conjugate to y, which we will write xSy, then xn ∼ yn. Finally, we note that the number of
conjugates of a must be a divisor of G.

Case 1. If a ∼ a2, then a2 ∼ a4, and a4 ∼ a8 = a3.

Case 2. If a ∼ a3, then a3 ∼ a9 = a4, and a4 ∼ a12 = a2.

Case 3. If a ∼ a4, then a2 ∼ a8 = a3.

In the first two cases a has 4 conjugates, which contradicts the assumption that G has odd
order. In the last case, a has either 2 or 4 conjugates, which again leads to the same contra-
diction.

SOLUTIONS: §7.2 Conjugacy

19. Prove that if the center of the group G has index n, then every conjugacy class of G has at
most n elements.

Solution: The conjugacy class of a ∈ G has [G : C(a)] elements. Since the center Z(G) is
contained in C(a), we have [G : C(a)] ≤ [G : Z(G)] = n. (In fact, [G : C(a)] must be a divisor
of n.)

20. Let G be a group with center Z(G). Prove that G/Z(G) is abelian iff for each element x 6∈ Z(G)
the conjugacy class of x is contained in the coset Z(G)x.

Solution: First suppose that G/Z(G) is abelian and x ∈ G but x 6∈ Z(G). For any a ∈ G
we have ax = zxa for some z ∈ Z(G), since Z(G)ax = Z(G)xa in the factor group G/Z(G).
Thus axa−1 = zx for some z ∈ Z(G), showing that the conjugate axa−1 belongs to the coset
Z(G)x.

Conversely, assume the given condition, and let x, y ∈ G. Then yxy−1 ∈ Z(G)x, so yx ∈
Z(G)xy, which shows that Z(G)yx = Z(G)xy, and thus G/Z(G) is abelian.

21. Find all finite groups that have exactly two conjugacy classes.

Solution: Suppose that |G| = n. The identity element forms one conjugacy class, so the second
conjugacy class must have n− 1 elements. But the number of elements in any conjugacy class
is a divisor of |G|, so the only way that n− 1 is a divisor of n is if n = 2.

22. Let G be the dihedral group with 12 elements, given by generators a, b with |a| = 6, |b| = 2,
and ba = a−1b. Let H = {1, a3, b, a3b}. Find the normalizer of H in G and find the subgroups
of G that are conjugate to H.

Solution: The normalizer of H is a subgroup containing H, so since H has index 3, either
NG(H) = H or NG(H) = G. Choose any element not in H to do the first conjugation.

aHa−1 = {1, a(a3)a5, aba5, a(a3b)a5} = {1, a3, a2b, a5b}
This computation shows that a is not in the normalizer, so NG(H) = H. Conjugating by any
element in the same left coset aH = {a, a4, ab, a4b} will give the same subgroup. Therefore it
makes sense to choose a2 to do the next computation.
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a2Ha−2 = {1, a3, a2ba4, a2(a3b)a4} = {1, a3, a4b, ab}
It is interesting to note that we had shown earlier that b, a2b, and a4b form one conjugacy
class, while ab, a3b, and a5b form a second conjugacy class. In the above computations, notice
how the orbits of individual elements combine to give the orbit of a subgroup.

23. Write out the class equation for the dihedral group Dn. Note that you will need two cases:
one when n is even, and one when n is odd.

Solution: From Exercise 7.2.13 in the text we have the following results. When n is odd
the center is trivial and elements of the form aib are all conjugate. Elements of the form ai

are conjugate in pairs; am 6= a−m since a2m 6= 1. We could write the class equation in the
following form.

|G| = 1 + 2 + . . .+ 2︸ ︷︷ ︸
(n−1)/2 times

+n

When n is even, the center has two elements. (The element an/2 is conjugate to itself since
an/2 = a−n/2, so Z(G) = {1, an/2}.) Therefore elements of the form aib split into two conjugacy
classes. In this case the class equation has the following form.

|G| = 2 + 2 + . . .+ 2︸ ︷︷ ︸
(n−2)/2 times

+
n

2
+
n

2

24. Show that for all n ≥ 4, the centralizer of the element (1, 2)(3, 4) in Sn has order 8 · (n− 4)!.
Determine the elements in CSn((1, 2)(3, 4)) explicitly.

Solution: The conjugates of a = (1, 2)(3, 4) in Sn are the permutations of the form (a, b)(c, d).
The number of ways to construct such a permutation is

n(n− 1)
2

· (n− 2)(n− 3)
2

· 1
2
,

and dividing this into n! gives the order 8 · (n− 4)! of the centralizer.

We first compute the centralizer of a in S4. The elements (1, 2) and (3, 4) clearly commute
with (1, 2)(3, 4). Note that a is the square of b = (1, 3, 2, 4); it follows that the centralizer
contains 〈b〉, so b3 = (1, 4, 2, 3) also belongs. Computing products of these elements shows that
we must include (1, 3)(2, 4) and (1, 4)(2, 3), and this gives the required total of 8 elements.

To find the centralizer of a in Sn, any of the elements listed above can be multiplied by any
permutation disjoint from (1, 2)(3, 4). This produces the required total |C(a)| = 8 · (n− 4)!.

SOLUTIONS: §7.3 Group actions

15. Let G be a group which has a subgroup of index 6. Prove that G has a normal subgroup whose
index is a divisor of 720.

Solution: Suppose that H is a subgroup with index 6. Letting G act by multiplication on the
left cosets of H produces a homomorphism from G into S6. The order of the image must be a
divisor of |S6| = 720, and so the index of the kernel is a divisor of 720.

16. Let G act on the subgroup H by conjugation, let S be the set of all conjugates of H, and let
φ : G→ Sym(S) be the corresponding homomorphism. Show that ker(φ) is the intersection of
the normalizers N(aHa−1) of all conjugates of H.

Solution: We have x ∈ ker(φ) iff x(aHa−1)x−1 = aHa−1 for all a ∈ G.
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17. Let F = Z3, G = GL2(F ), and S = F 2. Find the generalized class equation (see Theo-
rem 7.3.6) for the standard action of G on S.

Solution: There are only two orbits, since the zero vector is left fixed, and any nonzero vector
can be mapped by G to any other nonzero vector. Thus |S| = 9, |SG| = 1, and [G : Gx] = 8

for x =
[

1
0

]
, so the generalized class equation is 9 = 1 + 8.

To double check this, we can compute Gx. A direct computation shows that the elements of Gx

must have the form
[

1 a
1 b

]
, where a 6= b since the matrix must have nonzero determinant.

There are 6 matrices of this type, so [G : Gx] = 8 since |G| = 48, as noted in Section 7.0.

18. Let F = Z3, G = GL2(F ), and let N be the center of G. Prove that G/N ∼= S4 by defining an
action of G on the four one-dimensional subspaces of F 2.

Solution: In the previous problem, F 2 contains 4 one-dimensional subspaces. (You can easily
write out the list.) Each matrix in G represents an isomorphism of F 2, and so it simply
permutes these one-dimensional subspaces. Thus we can let S be the set of one-dimensional
subspaces, and let G act on them as described above. Multiplying by a scalar leaves each
one-dimensional subspace fixed, and this is the only linear transformation to do so. Thus
the action of G defines a homomorphism into S4 whose kernel is the set of scalar matrices,
which is precisely the center N . The group G = GL2(Z3) has (32 − 1)(33 − 3) elements (see
Exercise 7.7.11). The center consists of two scalar matrices, so |G/N | = 24. It follows that
the homomorphism must map G/N onto S4, since |S4| = 4! = 24.

SOLUTIONS: §7.4 The Sylow theorems

15. By direct computation, find the number of Sylow 3-subgroups and the number of Sylow 5-
subgroups of the symmetric group S5. Check that your calculations are consistent with the
Sylow theorems.

Solution: In S5 there are (5 · 4 · 3)/3 = 20 three cycles. These will split up into 10 subgroups
of order 3. This number is congruent to 1 mod 3, and is a divisor of 5 · 4 · 2.

There are (5!)/5 = 24 five cycles. These will split up into 6 subgroups of order 5. This number
is congruent to 1 mod 5, and is a divisor of 4 · 3 · 2.

16. How many elements of order 7 are there in a simple group of order 168?

Solution: First, 168 = 23 · 3 · 7. The number of Sylow 7-subgroups must be congruent to 1
mod 7 and must be a divisor of 24. The only possibilities are 1 and 8. By assumption there is
no proper normal subgroup, so the number must be 8. The subgroups all have the identity in
common, leaving 8 · 6 = 48 elements of order 7.

17. Let G be a group of order 340. Prove that G has a normal cyclic subgroup of order 85 and an
abelian subgroup of order 4.

Solution: First, 340 = 22 · 5 · 17. There exists a Sylow 2-subgroup of order 4, and it must
be abelian. No nontrivial divisor of 68 = 22 · 17 is congruent to 1 mod 5, so the Sylow 5-
subgroup is normal. Similarly, the Sylow 17-subgroup is normal. These subgroups have trivial
intersection, so their product is a direct product, and hence must be cyclic of order 85 = 5 ·17.
The product of two normal subgroups is again normal, so this produces the required normal
cyclic subgroup of order 85.

18. Show that any group of order 100 has a normal subgroup of order 25.

Solution: The number of Sylow 5-subgroups is congruent to 1 modulo 5 and a divisor of 4, so
it must be 1.
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19. Show that there is no simple group of order 200.
Solution: Since 200 = 23 · 52, the number of Sylow 5-subgroups is congruent to 1 mod 5 and
a divisor of 8. Thus there is only one Sylow 5-subgroup, and it is a proper nontrivial normal
subgroup.

20. Show that a group of order 108 has a normal subgroup of order 9 or 27.
Solution: Let S be a Sylow 3-subgroup of G. Then [G : S] = 4, since |G| = 2233, so we can
let G act by multiplication on the cosets of S. This defines a homomorphism φ : G→ S4, so it
follows that |φ(G)| is a divisor of 12, since it must be a common divisor of 108 and 24. Thus
| ker(φ)| ≥ 9, and it follows from Exercise 7.3.2 (a) of the text that ker(φ) ⊆ S. Thus | ker(φ)|
must be a divisor of 27, and so either | ker(φ)| = 9 or | ker(φ)| = 27.

21. Let p be a prime number. Find all Sylow p-subgroups of the symmetric group Sp.
Solution: Since |Sp| = p!, and p is a prime number, the highest power of p that divides |Sp| is p.
Therefore the Sylow p-subgroups are precisely the cyclic subgroups of order p, each generated
by a p-cycle. There are (p− 1)! = p!/p ways to construct a p-cycle (a1, . . . , ap). The subgroup
generated by a given p-cycle will contain the identity and the p− 1 powers of the cycle. Two
different such subgroups intersect in the identity, since they are of prime order, so the total
number of subgroups of order p in Sp is (p− 2)! = (p− 1)!/(p− 1).

22. Let G be the group of matrices
{[

1 0
x a

]}
such that x ∈ Z7 and a ∈ Z×7 .

(a) Find n7(G), and find a Sylow 7-subgroup of G.
Solution: The group has order 42 = 6 · 7, so n7(G) = 1. A Sylow 7-subgroup must have 7

elements, and the set of matrices of the form
[

1 0
x 1

]
forms such a subgroup.

(b) Find n3(G), and find a Sylow 3-subgroup of G.
Solution: The number of Sylow 3-subgroups is ≡ 1 (mod 3) and a divisor of 14, so it must be

1 or 7. The element
[

1 0
0 2

]
has order 3, so it generates a Sylow 3-subgroup H. Conjugating

this element by
[

1 0
1 1

]
gives

[
1 0
1 2

]
, so H is not normal, and therefore there must 7

Sylow 3-subgroups.

23. Prove that if N is a normal subgroup of G that contains a Sylow p-subgroup of G, then the
number of Sylow p-subgroups of N is the same as that of G.
Solution: Suppose that N contains the Sylow p-subgroup P . Then since N is normal it
also contains all of the conjugates of P . But this means that N contains all of the Sylow
p-subgroups of G, since they are all conjugate by Theorem 7.4.4 (a). We conclude that N and
G have the same number of Sylow p-subgroups.

24. Prove that if G is a group of order 105, then G has a normal Sylow 5-subgroup and a normal
Sylow 7-subgroup.
Solution: Use the previous problem. Since 105 = 3 · 5 · 7, we have n3 = 1 or 7, n5 = 1 or 21,
and n7 = 1 or 15 for the numbers of Sylow subgroups. Let P be a Sylow 5-subgroup and let
Q be a Sylow 7-subgroup. At least one of these subgroups must be normal, since otherwise
we would have 21 · 4 elements of order 5 and 15 · 6 elements of order 7. Therefore PQ is a
subgroup, and it must be normal since its index is the smallest prime divisor of |G|. (See
Exercise 7.3.12 in the text.) If follows that we can apply Problem 23. Since PQ is normal and
contains a Sylow 5-subgroup, we can reduce to the number 35 when considering the number of
Sylow 5-subgroups, and thus n5(G) = n5(PQ) = 1. Similarly, since PQ is normal and contains
a Sylow 7-subgroup, we have n7(G) = n7(PQ) = 1.
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SOLUTIONS: §7.5 Finite abelian groups

13. Find all abelian groups of order 108 (up to isomorphism).

Solution: The prime factorization is 108 = 22 · 33. There are two possible groups of order 4:
Z4 and Z2×Z2. There are three possible groups of order 27: Z27, Z9×Z3, and Z3×Z3×Z3.
This gives us the following possible groups:

Z4 × Z27 Z2 × Z2 × Z27

Z4 × Z9 × Z3 Z2 × Z2 × Z9 × Z3

Z4 × Z3 × Z3 × Z3 Z2 × Z2 × Z3 × Z3 × Z3 .

14. Let G and H be finite abelian groups, and assume that G×G is isomorphic to H ×H. Prove
that G is isomorphic to H.

Solution: Let p be a prime divisor of |G|, and let q = pα be the order of a cyclic component of
G. If G has k such components, then G×G has 2k components of order q. An isomorphism
between G × G and H ×H must preserve these components, so it follows that H also has k
cyclic components of order q. Since this is true for every such q, Theorem 7.5.6 gives identical
decompositions for G and H. It follows that G ∼= H.

15. Let G be an abelian group which has 8 elements of order 3, 18 elements of order 9, and no other
elements besides the identity. Find (with proof) the decomposition of G as a direct product
of cyclic groups.

Solution: We have |G| = 27. First, G is not cyclic since there is no element of order 27. Since
there are elements of order 9, G must have Z9 as a factor. To give a total of 27 elements, the
only possibility is G ∼= Z9 × Z3.

Check: The elements 3 and 6 have order 3 in Z9, while 1 and 2 have order 3 in Z3. Thus the
following 8 elements have order 3 in the direct product: (3, 0), (6, 0), (3, 1), (6, 1), (3, 2), (6, 2),
(0, 1), and (0, 2).

16. Let G be a finite abelian group with |G| = 216. If |6G| = 6, determine G up to isomorphism.

Solution: Assume that G is written additively. Since 216 = 23 ·33, we have G = H⊕K, where
H is the Sylow 2-subgroup of G and K is the Sylow 3-subgroup K of G. Since H and K are
invariant under any automorphism and 6G ∼= Z2 ×Z3, it follows that 6H ∼= Z2 and 6K ∼= Z3.

Multiplication by 3 defines an automorphism of H, so we only need to consider 2H. Thus
2H ∼= Z2, so we know that there are elements of order greater than 2, and that H is not cyclic,
since 2Z8

∼= Z4. We conclude that H ∼= Z4 × Z2. A similar argument shows that K must be
isomorphic to Z9 × Z3. Thus G ∼= Z4 × Z2 × Z9 × Z3, or G ∼= Z36 × Z6.

17. Apply both structure theorems to give the two decompositions of the abelian group Z×216.

Solution: Z×216
∼= Z×8 × Z×27

∼= Z2 × Z2 × Z×27

Since 27 is a power of an odd prime, it follows from Corollary 7.5.13 that Z×27 is cyclic.

This can also be shown directly by guessing that 2 is a generator. Since Z×27 has order 33−32 =
18, an element can only have order 1, 2, 3, 6, 9 or 18. We have 22 = 4, 23 = 8, 26 ≡ 82 ≡ 10,
and 29 ≡ 23 · 26 ≡ 8 · 10 ≡ −1, so it follows that 2 must be a generator.

We conclude that Z×216
∼= Z2 × Z2 × Z2 × Z9

∼= Z18 × Z2 × Z2.

18. Let G and H be finite abelian groups, and assume that they have the following property. For
each positive integer m, G and H have the same number of elements of order m. Prove that
G and H are isomorphic.
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Solution: We give a proof by induction on the order of |G|. The statement is clearly true
for groups of order 2 and 3, so suppose that G and H are given, and the statement holds for
all groups of lower order. Let p be a prime divisor of |G|, and let Gp and Hp be the Sylow
p-subgroups of G and H, respectively. If we can show that Gp ∼= Hp for all p, then it will
follow that G ∼= H, since G and H are direct products of their Sylow subgroups.

Since the Sylow p-subgroups contain all elements of order a power of p, the induction hypothesis
applies to Gp and Hp. Let x be an element of Gp with maximal order q = pα. Then 〈x〉 is a
direct factor of Gp by Lemma 7.5.5, so there is a subgroup G′ with Gp = 〈x〉 × G0. By the
same argument we can write Hp = 〈y〉×H0, where y has the same order as x. Thus 〈x〉 ∼= 〈y〉,
and then Gp ∼= Hp if we can show that G0

∼= H0.

To show that G0
∼= H0, we need to verify that G0 and H0 satisfy the induction hypothesis. We

certainly have |G0| = |H0|, but we must look at the number of elements of each order. Consider
G1 = 〈xp〉 × G0 and H1 = 〈yp〉 × H0. To obtain G1 as a subgroup of Gp we have removed
elements of the form (xk, g0), where xk has order q and g0 is any element of G0. Because x has
maximal order in a p-group, in each case the order of g0 is a divisor of q, and so (xk, g1) has
order q since the order of an element in a direct product is the least common multiple of the
orders of the components. Thus to construct G1 we have removed (pα− pα−1) · |G0| elements,
each having order q. The same is true of H1. It follows from the hypothesis that we are left
with the same number of elements of each order, and so the induction hypothesis implies that
G1
∼= H1. But then G0

∼= H0, and so Gp ∼= Hp, completing the proof.

SOLUTIONS: §7.6 Solvable groups

11. Let p be a prime and let G be a nonabelian group of order p3. Show that the center Z(G) of
G is equal to the commutator subgroup G′ of G.

Solution: Since G is nonabelian, by Exercise 7.2.17 of the text we have |Z(G)| = p. (The center
is nontrivial by Theorem 7.2.8, and if |Z(G)| = p2, then G/Z(G) is cyclic, and Exercise 3.8.14
of the text implies that G is abelian.) On the other hand, any group of order p2 is abelian by
Corollary 7.2.9, so G/Z(G) is abelian, which implies that G′ ⊆ Z(G). Since G is nonabelian,
G′ 6= 〈1〉, and therefore G′ = Z(G).

12. Prove that the dihedral group Dn is solvable for all n.

Solution: By Problem 7.0.7, with the standard description of the dihedral group the commu-
tator subgroup D′n is either 〈a〉 or

〈
a2
〉
. In either case, the commutator subgroup is abelian,

so D′′n = 〈1〉.

13. Prove that any group of order 588 is solvable, given that any group of order 12 is solvable.

Solution: We have 588 = 22 ·3 ·72. Let S be the Sylow 7-subgroup. It must be normal, since 1
is the only divisor of 12 that is ≡ 1 (mod 7). By assumption, G/S is solvable since |G/S| = 12.
Furthermore, S is solvable since it is a p-group. Since both S and G/S are solvable, it follows
from Corollary 7.6.8 (b) that G is solvable.

14. Let G be a group of order 780 = 22 · 3 · 5 · 13. Assume that G is not solvable. What are the
composition factors of G? (Assume that the only nonabelian simple group of order ≤ 60 is the
alternating group A5.)

Solution: The Sylow 13-subgroup N is normal, since 1 is the only divisor of 60 that is ≡
1 (mod 13). Using the fact that the smallest simple nonabelian group has order 60, we see
that the factor G/N must be simple, since otherwise each composition factor would be abelian
and G would be solvable. Thus the composition factors are Z13 and A5.
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SOLUTIONS: §7.7 Simple groups

1. Let G be a group of order 2m, where m is odd. Show that G is not simple.

Solution: Since this problem from the text is very useful, it seemed worthwhile to include a
solution in the review material.

Let |G| = 2m, where m is odd and m > 1, and assume that G is simple. Let φ : G→ Sym(G)
be defined for all g ∈ G by φ(g) = λg, where λg : G→ G is given by λg(x) = gx for all x ∈ G.
Since G is simple, ker(φ) = 〈1〉, and so G ⊆ Sym(G) = S2m. Since |G| = 2m, it follows from
Exercise 3.1.24 of the text that there exists a ∈ G with a2 = 1 but a 6= 1. For each x ∈ G we
have λa(x) = ax and λa(ax) = a2x = x, which implies that λa is a product of m transpositions
(x, ax). Hence λa is an odd permutation since m is odd. Let H = {x ∈ G | φ(x) = λx is even}.
Then H is a subgroup of G, and since a ∈ G − H, it is easy to check that [G : H] = 2, and so
H is normal, contradicting the assumption that G is simple.

15. Prove that there are no simple groups of order 200.

Solution: Suppose that |G| = 200 = 23 · 52. The number of Sylow 5 subgroups must be a
divisor of 8 and congruent to 1 modulo 5, so it can only be 1, and this gives us a proper
nontrivial normal subgroup.

16. Sharpen Exercise 7.7.3 (b) of the text by showing that if G is a simple group that contains a
subgroup of index n, where n > 2, then G can be embedded in the alternating group An.

Solution: Assume that H is a subgroup with [G : H] = n, and let G act by multiplication on
the left cosets of H. This action is nontrivial, so the corresponding homomorphism φ : G→ Sn
is nontrivial. Therefore ker(φ) is trivial, since G is simple. Thus G can be embedded in Sn.
Then An ∩ φ(G) is a normal subgroup of φ(G), so since G is simple, either φ(G) ⊆ An, or
An ∩ φ(G) = 〈1〉. The second case implies |G| = 2, since the square of any odd permutation is
even, and this cannot happen since n > 2.

17. Prove that if G contains a nontrivial subgroup of index 3, then G is not simple.

Solution: If G is simple and contains a subgroup of index 3, then G can be embedded in A3

by Problem 16. If the subgroup of index 3 is nontrivial, then |G| > 3 = |A3|, a contradiction.

18. Prove that there are no simple groups of order 96.

Solution: Suppose that |G| = 96 = 25 · 3. Then the Sylow 2-subgroup of G has index 3, and
so Problem 17 shows that G cannot be simple.

An alternate proof is to observe that |G| is not a divisor of 3!.

19. Prove that there are no simple groups of order 132.

Solution: Since 132 = 22 · 3 · 11, for the number of Sylow subgroups we have n2 = 1, 3, 11,
or 33; n3 = 1, 4, or 22; and n11 = 1 or 12. We will focus on n3 and n11. If n3 = 4 we can let
the group act on the Sylow 3-subgroups to produce a homomorphism into S4. Because 132 is
not a divisor of 24 = |S4| this cannot be one-to-one and therefore has a nontrivial kernel. If
n3 = 22 and n11 = 12 we get too many elements: 44 of order 3 and 120 of order 11. Thus
either n3 = 1 or n11 = 1, and the group has a proper nontrivial normal subgroup.

20. Prove that there are no simple groups of order 160.

Solution: Suppose that |G| = 160 = 25 · 5. Then the Sylow 2-subgroup of G has index 5, and
25 · 5 is not a divisor of 5! = 120, so G must have a proper nontrivial normal subgroup.

21. Prove that there are no simple groups of order 280.

Solution: Since 280 = 23 · 5 · 7, in this case for the number of Sylow subgroups we have
n2 = 1, 5, 7, or 35; n5 = 1 or 56; and n7 = 1 or 8. Suppose that n5 = 56 and n7 = 8,
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since otherwise either there is 1 Sylow 5-subgroup or 1 Sylow 7-subgroup, showing that the
group is not simple. Since the corresponding Sylow subgroups are cyclic of prime order, their
intersections are always trivial. Thus we have 8 · 6 elements of order 7 and 56 · 4 elements of
order 5, leaving a total of 8 elements to construct all of the Sylow 2-subgroups. It follows that
there can be only one Sylow 2-subgroup, so it is normal, and the group is not simple in this
case.

22. Prove that there are no simple groups of order 1452.

Solution: We have 1452 = 22 · 3 · 112, so we must have n11 = 1 or 12. In the second case, we
can let the group act by conjugation on the set of Sylow 11-subgroups, producing a nontrivial
homomorphism from the group into S12. But 1452 is not a divisor of |S12| = 12! since it has
112 as a factor, while 12! does not. Therefore the kernel of the homomorphism is a proper
nontrivial normal subgroup, so the group cannot be simple.



Chapter 8

Galois Theory Solutions

SOLUTIONS: §8.0 Splitting fields

1. Find the splitting field over Q for the polynomial x4 + 4.

Solution: It is useful to first recall Eisenstein’s irreducibility criterion. Let

f(x) = anx
n + an−1x

n−1 + . . .+ a0

be a polynomial with integer coefficients. If there exists a prime number p such that

an−1 ≡ an−2 ≡ . . . ≡ a0 ≡ 0 (mod p)

but an 6≡ 0 (mod p) and a0 6≡ 0 (mod p2), then f(x) is irreducible over the field of Q rational
numbers.

We have the factorization x4 + 4 = (x2 + 2x+ 2)(x2−2x+ 2), where the factors are irreducible
by Eisenstein’s criterion (p = 2). The roots are ±1± i, so the splitting field is Q(i), which has
degree 2 over Q.

An alternate solution is to solve x4 = −4. To find one root, use DeMoivre’s theorem to get
4
√
−1 = 1√

2
+ 1√

2
i, and then multiply by 4

√
4 =
√

2, to get 1 + i. The other roots are found by
multiplying by the powers of i, because it is a primitive 4th root of unity.

2. Let p be a prime number. Find the splitting fields for xp − 1 over Q and over R.

Solution: We have xp − 1 = (x− 1)(xp−1 + · · ·+ x + 1), and the second factor is irreducible
over Q by Corollary 4.4.7 (substitute x + 1 and then apply Eisenstein’s criterion, using the
prime p). Any root ζ 6= 1 is a primitive pth root of unity, so Q(ζ) contains the other pth roots
of unity and therefore is a splitting field with [Q(ζ) : Q] = p− 1.

If p 6= 2, then xp − 1 has at least one root that is not a real number. Therefore the splitting
field for xp − 1 over R must be C.

3. Find the splitting field for x3 + x+ 1 over Z2.

Solution: Adjoin a root α of the polynomial to obtain F = GF(23). We can realize F as the
set {0, 1, α, α+ 1, α2, α2 + 1, α2 + α, α2 + α+ 1}, with α3 = α+ 1 and α4 = α2 + α. Dividing
x3 + x+ 1 by x− α produces the factorization x3 + x+ 1 = (x− α)(x2 + αx+ (α2 + 1)).

To verify that F is indeed the splitting field for x3 + x+ 1, we need to know that x3 + x+ 1
factors into linear factors over F . This follows from Corollary 6.6.2, or from the following
calculations, which show that α2 and α2 + α are roots of the polynomial x2 + αx+ (α2 + 1).

(α2)2 + α(α2) + (α2 + 1) = (α2 + α) + α3 + α2 + 1 = α3 + α+ 1 = 0

(α2 + α)2 + α(α2 + α) + (α2 + 1) = (α2 + α+ α2) + α3 + α2 + α2 + 1 = α3 + α+ 1 = 0

41
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4. Find the degree of the splitting field over Z2 for the polynomial (x3 + x+ 1)(x2 + x+ 1).

Solution: The two polynomials are irreducible (you can check that they have no roots).
Therefore the splitting field must have subfields of degree 3 and of degree 2, so the degree
of the splitting field over Z2 must be 6.

5. Let F be an extension field of K. Show that the set of all elements of F that are algebraic
over K is a subfield of F .

Solution: The solution is actually given in Corollary 6.2.8, but it is worth repeating. What-
ever you do, don’t try to start with two elements and work with their respective minimal
polynomials.

If u, v are algebraic elements of F , then K(u, v) is a finite extension of K. Since u+ v, u− v,
and uv all belong to the finite extension K(u, v), these elements are algebraic. The same
argument applies to u/v, if v 6= 0.

6. Let F be a field generated over the field K by u and v of relatively prime degrees m and n,
respectively, over K. Prove that [F : K] = mn.

Solution: Since F = K(u, v) ⊇ K(u) ⊇ K, where [K(u) : K] = m and [K(u, v) : K(u)] ≤ n,
we have [F : K] ≤ mn. But [K(v) : K] = n is a divisor of [F : K], and since gcd(m,n) = 1,
we must have [F : K] = mn.

7. Let F ⊇ E ⊇ K be extension fields. Show that if F is algebraic over E and E is algebraic over
K, then F is algebraic over K.

Solution: Again, this is a result from Chapter 6 that is a good review problem.

We need to show that each element u ∈ F is algebraic over K. It is enough to show that
u belongs to a finite extension of K. You need to resist your first reaction to work with
E(u), because although it is a finite extension of E, you cannot conclude that E(u) is a finite
extension of K, since E need not be a finite extension of K.

Going back to the definition of an algebraic element, we can use the fact that u is a root of
some nonzero polynomial f(x) = a0 + a1x+ . . .+ anx

n over E. Instead of using all of E, let
E′ be the subfield K(a0, a1, . . . , an) ⊆ E, which is a finite extension of K since each coefficient
ai ∈ E is algebraic over K. Now u is actually algebraic over the smaller field E′, so u lies in
the finite extension E′(u) of K. This proves that u is algebraic over K, and completes the
proof that F is algebraic over K.

8. Let F ⊃ K be an extension field, with u ∈ F . Show that if [K(u) : K] is an odd number, then
K(u2) = K(u).

Solution: Since u2 ∈ K(u), we have K(u) ⊇ K(u2) ⊃ K. Suppose that u 6∈ K(u2). Then
x2−u2 is irreducible over K(u2) since it has no roots in K(u2), so u is a root of the irreducible
polynomial x2 − u2 over K(u2). Thus [K(u) : K(u2)] = 2, and therefore 2 is a factor of
[K(u) : K]. This contracts the assumption that [K(u) : K] is odd.

9. Find the degree [F : Q], where F is the splitting field of the polynomial x3 − 11 over the field
Q of rational numbers.

Solution: The roots of the polynomial are 3
√

11, ω 3
√

11, and ω2 3
√

11, where ω is a primitive
cube root of unity. Since ω is not real, it cannot belong to Q( 3

√
11). Since ω is a root of

x2 + x+ 1 and F = Q( 3
√

11, ω), we have [F : Q] = 6.

10. Determine the splitting field over Q for x4 + 2.

Solution: To get the splitting field F , we need to adjoin the 4th roots of −2, which have the
form ωi 4

√
2, where ω is a primitive 8th root of unity and i = 1, 3, 5, 7. To construct the roots

we only need to adjoin 4
√

2 and i.
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To show this, using the polar form cos θ+ i sin θ of the complex numbers, we can see that ω =√
2

2 +
√

2
2 i, ω

3 = −
√

2
2 +

√
2

2 i, ω
5 = −

√
2

2 −
√

2
2 i, and ω7 =

√
2

2 −
√

2
2 i. Thus 4

√
2
√

2 = ω 4
√

2+ω7 4
√

2
must belong to F , and then the cube of this element, which is 4 4

√
2, must also belong to F .

Therefore 4
√

2 ∈ F (which is somewhat surprising) and the square of this element is
√

2, so
it follows that

√
2 ∈ F , and therefore i ∈ F . The splitting field is thus Q( 4

√
2, i), which has

degree 8 over Q.

Note: This is the same field as in Example 8.3.3 in the text, which computes the Galois group
of x4 − 2 over Q.

11. Determine the splitting field over Q for x4 + x2 + 1.

Solution: Be careful here–this polynomial is not irreducible. In fact, x6 − 1 factors in two
ways, and provides an important clue. Note that x6 − 1 = (x3)2 − 1 = (x3 − 1)(x3 + 1) =
(x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1) and x6 − 1 = (x2)3 − 1 = (x2 − 1)(x4 + x2 + 1). Thus
x4 +x2 +1 = (x2 +x+1)(x2−x+1), and the roots of the first factor are the primitive 3rd roots
of unity, while the roots of the second factor are the primitive 6th roots of unity. Adjoining a
root ω of x2 − x+ 1 gives all 4 roots, and so the splitting field Q(ω) has degree 2 over Q.

Comments Since 1
2 +

√
3

2 i is a primitive 6th root of unity, the splitting field is contained in
Q(
√

3, i), but not equal to it, since the latter field has degree 4 over Q. However, the splitting
field could be described as Q(

√
3i). It is interesting that you also obtain the splitting field by

adjoining a primitive cube root of unity.

12. Factor x6 − 1 over Z7; factor x5 − 1 over Z11.

Solution: Since the multiplicative group Z×7 has order 6, each nonzero element of Z7 is a root
of x6 − 1. Thus Z7 itself is the splitting field of x6 − 1. (Of course, this can also be proved
directly from Theorem 6.5.2.) Therefore over Z7 we have the factorization

x6 − 1 = x(x− 1)(x+ 1)(x− 2)(x+ 2)(x− 3)(x+ 3) .

In solving the second half of the problem, looking for roots of x5 − 1 in Z11 is the same as
looking for elements of order 5 in the multiplicative group Z×11. Theorem 6.5.10 implies that
the multiplicative group F× is cyclic if F is a finite field, so Z×11 is cyclic of order 10. Thus
it contains 4 elements of order 5, which means the x5 − 1 must split over Z11. To look for
a generator, we might as well start with 2, since it is the smallest element. The relevant
powers of 2 are 22 = 4 and 25 ≡ −1, so 2 must be a generator since it has order 10. The
even powers of 2 have order 5, and these are 22 = 4, 24 ≡ 5, 26 ≡ 9, and 28 ≡ 3. Therefore
x5 − 1 = (x− 1)(x− 3)(x− 4)(x− 5)(x− 9) over Z5.

Comment: The proof that the multiplicative group of a finite field is cyclic is an existence
proof, rather than a constructive one. There is no known algorithm for finding a generator for
the group.

SOLUTIONS: §8.1 Galois groups

7. Determine the group of all automorphisms of a field with 4 elements.

Solution: The automorphism group consists of two elements: the identity mapping and the
Frobenius automorphism.

Read on only if you need more detail. By Corollary 6.5.3, up to isomorphism there is only one
field with 4 elements, and it can be constructed as F = Z2[x]/

〈
x2 + x+ 1

〉
. Letting α be the

coset of x, we have F = {0, 1, α, 1 + α}. Any automorphism of F must leave 0 and 1 fixed, so
the only possibility for an automorphism other than the identity is to interchange α and 1+α.
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Is this an automorphism? Since x2 + x+ 1 ≡ 0, we have x2 ≡ −x− 1 ≡ x+ 1, so α2 = 1 + α
and (1 + α)2 = 1 + 2α + α2 = α. Thus the function that fixes 0 and 1 while interchanging α
and 1 + α is in fact the Frobenius automorphism of F .

8. Let F be the splitting field in C of x4 + 1.

(a) Show that [F : Q] = 4.

Solution: We have x8 − 1 = (x4 − 1)(x4 + 1) = (x − 1)(x + 1)(x2 + 1)(x4 + 1), giving the
factorization over Q. The factor x4 + 1 is irreducible over Q by Eisenstein’s criterion. The
roots of x4 +1 are thus the primitive 8th roots of unity, ±

√
2

2 ±
√

2
2 i, and adjoining one of these

roots also gives the others, together with i. Thus the splitting field is obtained in one step, by
adjoining one root of x4 + 1, so its degree over Q is 4.

It is clear that the splitting field can also be obtained by adjoining first
√

2 and then i, so it
can also be expressed as Q(

√
2, i).

(b) Find automorphisms of F that have fixed fields Q(
√

2), Q(i), and Q(
√

2i), respectively.

Solution: These subfields of Q(
√

2, i) are the splitting fields of x2 − 2, x2 + 1, and x2 + 2,
respectively. Any automorphism must take roots to roots, so if θ is an automorphism of
Q(
√

2, i), we must have θ(
√

2) = ±
√

2, and θ(i) = ±i. These possibilities must in fact define
4 automorphisms of the splitting field.

If we define θ1(
√

2) =
√

2 and θ1(i) = −i, then the subfield fixed by θ1 is Q(
√

2). If we define
θ2(
√

2) = −
√

2 and θ2(i) = i, then the subfield fixed by θ2 is Q(i). Finally, for θ3 = θ2θ1 we
have θ3(

√
2) = −

√
2 and θ(i) = −i, and thus θ3(

√
2i) =

√
2i, so θ3 has Q(

√
2i) as its fixed

subfield.

9. Find the Galois group over Q of the polynomial x4 + 4.

Solution: Problem 8.0.1 shows that the splitting field of the polynomial has degree 2 over Q,
and so the Galois group must be cyclic of order 2.

10. Find the Galois groups of x3 − 2 over the fields Z5 and Z11.

Solution: The polynomial is not irreducible over Z5, since x3 − 2 = (x+ 2)(x2 − 2x− 1). The
quadratic factor will have a splitting field of degree 2 over Z5, so the Galois group of x3 − 2
over Z5 is cyclic of order 2.

A search in Z11 for roots of x3−2 yields one and only one: x = 7. Then x3−2 can be factored
as x3− 2 = (x− 7)(x2 + 7x+ 5), and the second factor must be irreducible. The splitting field
has degree 2 over Z11, and can be described as Z11[x]/

〈
x2 + 7x+ 5

〉
. Thus the Galois group

of x3 − 2 over Z11 is again cyclic of order 2.

11. Find the Galois group of x4 − 1 over the field Z7.

Solution: We first need to find the the splitting field of x4 − 1 over Z7. We have x4 − 1 =
(x − 1)(x + 1)(x2 + 1). A quick check of ±2 and ±3 shows that they are not roots of x2 + 1
over Z7, so x2 + 1 is irreducible over Z7. To obtain the splitting field we must adjoin a root of
x2 + 1, so we get a splitting field Z7[x]/

〈
x2 + 1

〉
of degree 2 over Z7.

It follows from Theorem 8.1.6 that the Galois group of x4 − 1 over Z7 is cyclic of order 2.

12. Find the Galois group of x3 − 2 over the field Z7.

Solution: In this case, x3 − 2 has no roots in Z7, so it is irreducible. We adjoin a root α of
x3− 2 to Z7. The resulting extension Z7(α) has degree 3 over Z7, so it has 73 = 343 elements,
and each element is a root of the polynomial x343 − x. It follows from Corollary 6.6.2 that
Z7(α) is the splitting field of x3 − 2 over Z7. Since the splitting field has degree 3 over Z7, it
follows from Theorem 8.1.6 that the Galois group of the polynomial is cyclic of order 3.
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To show directly that we have found the correct splitting field, let β be a generator of the
multiplicative group of the extension. Then (β114)3 = β342 = 1, showing that Z7(α) contains
a nontrivial cube root of 1. It follows that x3 − 2 has three distinct roots in Z7(α): α, αβ114,
and αβ228, so therefore Z7(α) is indeed a splitting field for x3 − 2 over Z7.

SOLUTIONS: §8.2 Repeated roots

8. Let f(x) ∈ Q[x] be irreducible over Q, and let F be the splitting field for f(x) over Q. If
[F : Q] is odd, prove that all of the roots of f(x) are real.

Solution: Theorem 8.2.6 implies that f(x) has no repeated roots, so Gal(F/Q) has odd order.
If u is a nonreal root of f(x), then since f(x) has rational coefficients, its conjugate u must also
be a root of f(x). It follows that F is closed under taking complex conjugates. Since complex
conjugation defines an automorphism of the complex numbers, it follows that restricting the
automorphism to F defines a homomorphism from F into F . Because F has finite degree over
Q, the homomorphism must be onto as well as one-to-one. Thus complex conjugation defines
an element of the Galois group of order 2, and this contradicts the fact that the Galois group
has odd order. We conclude that every root of f(x) must be real.

9. Find an element α with Q(
√

2, i) = Q(α).

Solution: It follows from the solution of Problem 8.1.8 that we could take α =
√

2
2 +

√
2

2 i.

To give another solution, if we follow the proof of Theorem 8.2.8, we have u = u1 =
√

2,
u2 = −

√
2, v = v1 = i, and v2 = −i. The proof shows the existence of an element a with

u+av 6= ui+avj for all i and all j 6= 1. To find such an element we need
√

2+ai 6=
√

2+a(−i)
and
√

2 + ai 6= −
√

2 + a(−i). The easiest solution is to take a = 1, and so we consider the
element α =

√
2 + i. We have Q ⊆ Q(α) ⊆ Q(

√
2, i), and since α−1 ∈ Q(α), we must have

(
√

2 + i)−1 = (
√

2 − i)/3 ∈ Q(α). But then
√

2 − i belongs, and it follows immediately that√
2 and i both belong to Q(α), which gives us the desired equality Q(α) = Q(

√
2, i).

10. Find the Galois group of x6 − 1 over Z7.

Solution: The Galois group is trivial because x6 − 1 already splits over Z7.

Comment: Recall that Z7 is the splitting field of x7 − x = x(x6 − 1).

SOLUTIONS: §8.3 The fundamental theorem

6. Prove that if F is a field and K = FG for a finite group G of automorphisms of F , then there
are only finitely many subfields between F and K.

Solution: By Theorem 8.3.6 the given condition is equivalent to the condition that F is the
splitting field over K of a separable polynomial. Since we must have G = Gal(F/K), the
fundamental theorem of Galois theory implies that the subfields between F and K are in
one-to-one correspondence with the subgroups of F . Because G is a finite group, it has only
finitely many subgroups.

7. Let F be the splitting field over K of a separable polynomial. Prove that if Gal(F/K) is cyclic,
then for each divisor d of [F : K] there is exactly one field E with K ⊆ E ⊆ F and [E : K] = d.

Solution: By assumption we are in the situation of the fundamental theorem of Galois theory,
so that there is a one-to-one order-reversing correspondence between subfields of F that contain
K and subgroups of G = Gal(F/K). Because G is cyclic of order [F : K], there is a one-to-one
correspondence between subgroups of G and divisors of [F : K]. Thus for each divisor d of
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[F : K] there is a unique subgroup H of index d. By the fundamental theorem, [FH : K] =
[G : H], and so E = FH is the unique subfield with [E : K] = d.

Comment: Pay careful attention to the fact that the correspondence between subfields and
subgroups reverses the order.

8. Let F be a finite, normal extension of Q for which |Gal(F/Q)| = 8 and each element of
Gal(F/Q) has order 2. Find the number of subfields of F that have degree 4 over Q.

Solution: Since F has characteristic zero, the extension is automatically separable, and so the
fundamental theorem of Galois theory can be applied. Any subfield E of F must contain Q,
its prime subfield, and then [E : Q] = 4 iff [F : E] = 2, since [F : Q] = 8. Thus the subfields
of F that have degree 4 over Q correspond to the subgroups of Gal(F/Q) that have order 2.
Because each nontrivial element has order 2 there are precisely 7 such subgroups.

9. Let F be a finite, normal, separable extension of the field K. Suppose that the Galois group
Gal(F/K) is isomorphic to D7. Find the number of distinct subfields between F and K. How
many of these are normal extensions of K?

Solution: The fundamental theorem of Galois theory converts this question into the question
of enumerating the subgroups of D7, and determining which are normal. If we use the usual
description of D7 via generators a of order 7 and b of order 2, with ba = a−1b, then a generates
a subgroup of order 7, while each element of the form aib generates a subgroup of order 2,
for 0 ≤ i < 7. Thus there are 8 proper nontrivial subgroups of D7, and the only one that is
normal is 〈a〉, since it has |D7|/2 elements. As you should recall from the description of the
conjugacy classes of D7 (see Problem 7.2.23), conjugating one of the 2-element subgroups by
a produces a different subgroup, showing that none of them are normal.

10. Show that F = Q(i,
√

2) is normal over Q; find its Galois group over Q, and find all interme-
diate fields between Q and F .

Solution: It is clear that F is the splitting field over Q of the polynomial (x2 + 1)(x2 − 2),
and this polynomial is certainly separable. Thus F is a normal extension of Q.

The work necessary to compute the Galois group over Q has already been done in the solution
to Problem 8.1.8, which shows the existence of 3 nontrivial elements of the Galois group, each
of order 2. It follows that the Galois group is isomorphic to Z2 × Z2. Since the Galois group
has 3 proper nontrivial subgroups, there will be 3 intermediate subfields E with Q ⊂ E ⊂ F .
These have been found in Problem 8.1.8, and are Q(

√
2), Q(i), and Q(

√
2i).

Note: Problem 8.1.8 begins with the splitting field of x4 + 1 over Q.

11. Let F = Q(
√

2, 3
√

2). Find [F : Q] and prove that F is not normal over Q.

Solution: The element 3
√

2 has minimal polynomial x3 − 2 over Q. Since
√

2 has minimal
polynomial x2 − 2 over Q, we see that Q(

√
2) cannot be contained in Q( 3

√
2) since the first

extension has degree 2 over Q while the second has degree 3 over Q. It follows that [F : Q] = 6.

If F were a normal extension of Q, then since it contains one root 3
√

2 of the irreducible
polynomial x3 − 2 it would have to contain all of the roots. But F ⊆ R, while the other two
roots of x3 − 2 are non-real, so F cannot be a normal extension of Q.

12. Find the order of the Galois group of x5 − 2 over Q.

Solution: Let G be the Galois group in question, and let ζ be a primitive 5th root of unity.
Then the roots of x5 − 2 are α = 5

√
2 and αζj , for 1 ≤ j ≤ 4. The splitting field over Q is

F = Q( 5
√

2, ζ). Since p(x) = x5 − 2 is irreducible over Q by Eisenstein’s criterion, it is the
minimal polynomial of 5

√
2. The element ζ is a root of x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1),

so its minimal polynomial is q(x) = x4 + x3 + x2 + x + 1. Thus [F : Q] ≤ 20, but since the
degree must be divisible by 5 and 4, it follows that [F : Q] = 20, and therefore |G| = 20.
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Note: With a good deal of additional work, G can be shown to be isomorphic to the group
F20 studied in Exercises 7.1.12, 7.1.13, and 7.2.14 of the text. Any automorphism of F must
map roots to roots, for both p(x) and q(x). Define the automorphisms σij , for 0 ≤ i ≤ 5 and
0 ≤ j ≤ 4, by setting σij(α) = αζi and σij(ζ) = ζj . It can be shown that σklσij = σ(k+il),(jl).
If F20 is given by generators a of order 5 and b of order 4, with the relation ba = a2b, define
Φ : G→ F20 by Φ(σij) = aibj .

SOLUTIONS: §8.4 Solvability

7. Let f(x) be irreducible over Q, and let F be its splitting field over Q. Show that if Gal(F/Q)
is abelian, then F = Q(u) for all roots u of f(x).

Solution: Since F has characteristic zero, we are in the situation of the fundamental theorem
of Galois theory. Because Gal(F/Q) is abelian, every intermediate extension between Q and
F must be normal. Therefore if we adjoin any root u of f(x), the extension Q(u) must contain
all other roots of f(x), since it is irreducible over Q. Thus Q(u) is a splitting field for f(x),
so Q(u) = F .

8. Find the Galois group of x9 − 1 over Q.

Solution: We can construct the splitting field F of x9− 1 over Q by adjoining a primitive 9th
root of unity to Q. Since x9 − 1 = (x3 − 1)(x6 + x3 + 1) = (x− 1)(x2 + x + 1)(x6 + x3 + 1),
and the roots of x2 + x + 1 are the primitive cube roots of unity, we need to check that the
last factor is irreducible. Substituting x + 1 in this factor yields (x + 1)6 + (x + 1)3 + 1 =
x6 + 6x5 + 15x4 + 21x3 + 18x2 + 9x+ 3. This polynomial satisfies Eisenstein’s criterion for the
prime 3, which implies that the factor x6 +x3 +1 is irreducible over Q. The roots of this factor
are the primitive 9th roots of unity, so it follows that [F : Q] = 6. The proof of Theorem 8.4.2
(which is worth remembering) shows that Gal(F/Q) is isomorphic to a subgroup of Z×9 . Since
Z×9 is abelian of order 6, it is isomorphic to Z6. It follows that Gal(F/Q) ∼= Z6.

Comment: Section 8.5 of the text contains the full story. Theorem 8.5.4 shows that the Galois
group of xn − 1 over Q is isomorphic to Z×n , and so the Galois group is cyclic of order ϕ(n) iff
n = 2, 4, pk, or 2pk, for an odd prime p.

9. Show that x4 − x3 + x2 − x + 1 is irreducible over Q, and use it to find the Galois group of
x10 − 1 over Q.

Solution: We can construct the splitting field F of x10 − 1 over Q by adjoining a primitive
10th root of unity to Q. We have the factorization

x10 − 1 = (x5 − 1)(x5 + 1) = (x− 1)(x4 + x3 + x2 + x+ 1)(x+ 1)(x4 − x3 + x2 − x+ 1).

Substituting x− 1 in the last factor yields

(x− 1)4 − (x− 1)3 + (x− 1)2 − (x− 1) + 1

= (x4 − 4x3 + 6x2 − 4x+ 1)− (x3 − 3x2 + 3x− 1) + (x2 − 2x+ 1)− (x− 1) + 1

= x4 − 5x3 + 10x2 − 10x+ 5.

This polynomial satisfies Eisenstein’s criterion for the prime 5, which implies that the factor
x4 − x3 + x2 − x+ 1 is irreducible over Q.

The roots of this factor are the primitive 10th roots of unity, so it follows that [F : Q] =
ϕ(10) = 4. The proof of Theorem 8.4.2 shows that Gal(F/Q) ∼= Z×10, and so the Galois group
is cyclic of order 4.
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10. Show that p(x) = x5 − 4x + 2 is irreducible over Q, and find the number of real roots. Find
the Galois group of p(x) over Q, and explain why the group is not solvable.

Solution: The polynomial p(x) is irreducible over Q since it satisfies Eisenstein’s criterion for
p = 2. Since p(−2) = −22, p(−1) = 5, p(0) = 2, p(1) = −1, and p(2) = 26, we see that p(x)
has a real root between −2 and −1, another between 0 and 1, and a third between 1 and 2.
The derivative p′(x) = 5x4 − 4 has two real roots, so p(x) has one relative maximum and one
relative minimum, and thus it must have exactly three real roots. It follows as in the proof of
Theorem 8.4.8 that the Galois group of p(x) over Q is S5, and so it is not solvable.

Final comments

In Sections 8.5 and 8.6, the text provides some additional information about actually calculat-
ing Galois groups. In particular, the last section outlines some of the results that are necessary
in using a computer algebra program to compute Galois groups (over Q) of polynomials of low
degree.

You can find additional information in Sections 14.6 and 14.8 of the text by Dummit and
Foote. To calculate the Galois group of a polynomial in more difficult situations, you need to
learn about the discriminant of a polynomial, reduction modulo a prime, and about transitive
subgroups of the symmetric group.
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action, of a group, 11
algebraic element, 19
alternating group, 4, 16
alternating group, 4
Artin’s lemma, 25
automorphism group, 22
automorphism group, of a cyclic group, 9
automorphism, Frobenius, 23
automorphism, inner, 9
automorphism, of a group, 8
Burnside’s theorem, 10
Cauchy’s theorem, 10
Cayley’s theorem, 4
center, 7
centralizer, of an element, 10
characteristic subgroup, 9, 32
Chinese remainder theorem, 3
class equation, 10
class equation, for Dn, 10, 34
class equation, generalized, 11
commutator, 6, 15, 30
commutator, in Dn, 6, 30
commutator subgroup, 15
composition factor, 1, 15
composition series, 1, 15
conjugacy class equation, 10
conjugacy class, 9
conjugacy in Sn, 10
conjugate element, in a group, 9
conjugate permutations, 10
conjugate, of a subfield, 25
coset, left, 6
coset, right, 6
criterion, of Eisenstein, 41
cyclic group, 2
cyclotomic polynomial, 26
degree, of a field extension, 20
degree, of an element, 20
derivative, formal, 24
derived subgroup, 15
dihedral group, 4
direct product, 3
Eisenstein’s irreducibility criterion, 41
element, algebraic, 19
element, primitive, 24

element, transcendental, 19

exponent, 2
extension field, splitting, 21
extension problem, 1
extension, finite, 21
extension, Galois, 25
extension, normal, 25
extension, radical, 26
extension, separable, 24
extension, simple, 23
factor, of a composition series, 1, 15
factor group, 7
field extension, simple, 20
field, finite, 22
field, Galois, 23
field, of rational functions, 24
field, perfect, 24
field, splitting, 19
finite abelian group, 4
finite extension, 25
finite field, 28
first isomorphism theorem, for groups, 10
fixed subfield, 31
fixed subset, 14
Frobenius automorphism, 28, 54
fundamental theorem, of finite abelian

groups, 18
fundamental theorem, of Galois theory, 31
fundamental theorem, of group

homomorphisms, 9
G-fixed subfield, 31
G-invariant subfield, 31
Galois extension, 31
Galois field, 28
Galois group, of an equation, 27
Galois group, of an extension field, 27
Galois theory, fundamental theorem of, 31
Galois, 2, 23
general linear group, 6
general linear group, order of, 7, 37
generalized class equation, 15
generator, of a cyclic group, 2
group, alternating, 5, 20
group, cyclic, 2
group, dihedral, 5
group, factor, 8
group, finite abelian, 4
group, Galois, 27
group, general linear, 6
group, of automorphisms, 27
group, projective special linear, 7, 20
group, simple, 1, 20
group, solvable, 19



INDEX 51

group, solvable, 2
group, special linear, 6, 20
group, symmetric, 5, 20
group action, 14
group automorphism, 11
Hölder, 2
Hölder program, 2
index, of a subgroup, 8
inner automorphism, of a group, 11
insolvability of the quintic, 33
invariant subfield, 31
irreducibility criterion, of Eisenstein, 51
isomorphism theorem, first, 10
isomorphism theorem, second, 10
Jordan, 2
Jordan-Hölder theorem, 1, 19
Lagrange’s theorem, 16
left coset, 8
lemma, of Artin, 31
minimal polynomial, of an element, 24
multiplicity, of a root, 29
natural projection, 8
normal extension, 31
normal subgroup, 8
nth root of unity, 32
nth root of unity, primitive, 32
orbit, 14
p-group, 12
perfect field, 29
permutation matrix, 35
permutations, conjugate, 12
polynomial, cyclotomic, 33
polynomial, derivative of, 29
polynomial, Galois group of, 27
polynomial, minimal, 24
polynomial, separable, 30
prime subfield, 27
primitive element, 30
primitive nth root of unity, 32
projection, natural, 8
projective special linear group, 7, 20
quintic, insolvability of, 33
radical extension, 32
radicals, solvability by, 32
rational function field, 30
right coset, 8
root, multiplicity of, 29
root, simple, 29
root of unity, 31
root of unity, primitive, 31
second isomorphism theorem, for groups, 10
separable extension, 30

separable polynomial, 30
simple extension field, 24, 28, 30
simple group, 1, 20, 29
simplicity, of the alternating group, 20
simplicity, of the projective special linear

group, 20
solvability, by radicals, 23, 32
solvable group, 2, 19
special linear group, 6, 20
splitting field, 23, 26, 28
stabilizer, 14
subfield, conjugate, 31
subfield, fixed, 31
subfield, G-fixed, 31
subfield, G-invariant, 31
subfield, invariant, 31
subfield, prime, 27
subgroup, characteristic, 11, 40
subgroup, commutator, 19
subgroup, derived, 19
subgroup, normal, 8
subgroup, Sylow, 16
Sylow, 16
Sylow p-subgroup, 16
Sylow’s theorems, 16
symmetric group, 5, 20
theorem, first isomorphism, 10
theorem, of Burnside, 13
theorem, of Cauchy, 13
theorem, of Jordan and Hölder, 1, 19
theorem, of Lagrange, 16
theorem, second isomorphism, 10
theorems, of Sylow, 16
transcendental element, 24


